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Everyday decision-making commonly involves assigning values to complex objects with multiple value-relevant attributes.
Drawing on object recognition theories, we hypothesized two routes to multiattribute evaluation: assessing the value of the
whole object based on holistic attribute configuration or summing individual attribute values. In two samples of healthy
human male and female participants undergoing eye tracking and functional magnetic resonance imaging (fMRI) while evalu-
ating novel pseudo objects, we found evidence for both forms of evaluation. Fixations to and transitions between attributes
differed systematically when the value of pseudo objects was associated with individual attributes or attribute configurations.
Ventromedial prefrontal cortex (vmPFC) and perirhinal cortex were engaged when configural processing was required. These
results converge with our recent findings that individuals with vmPFC lesions were impaired in decisions requiring configural
evaluation but not when evaluating the sum of the parts. This suggests that multiattribute decision-making engages distinct
evaluation mechanisms relying on partially dissociable neural substrates, depending on the relationship between attributes
and value.
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Significance Statement

Decision neuroscience has only recently begun to address how multiple choice-relevant attributes are brought together during
evaluation and choice among complex options. Object recognition research makes a crucial distinction between individual at-
tribute and holistic/configural object processing, but how the brain evaluates attributes and whole objects remains unclear.
Using fMRI and eye tracking, we found that the vmPFC and the perirhinal cortex contribute to value estimation specifically
when value was related to whole objects, that is, predicted by the unique configuration of attributes and not when value was
predicted by the sum of individual attribute values. This perspective on the interactions between subjective value and object
processing mechanisms provides a novel bridge between the study of object recognition and reward-guided decision-making.

Introduction
Choosing which snack to buy requires assessing the value of
options based on multiple attributes (e.g., color, taste, healthi-
ness). Value can be related to individual attributes; for example,
if someone loves chocolate, all snacks containing this ingredient
will be valued above those that do not. Value can also emerge
from the combination of individual attributes, such as for choco-
late-peanut snacks, where the combination of sweet and salty
ingredients within the same snack might yield a value greater
than the sum of the individual attributes.

The object processing literature has shown that there are dis-
tinct neural substrates hierarchically organized along the ventral
visual stream (VVS) that represent the individual elements that
make up complex objects and the holistic, configural combina-
tions of those elements (Riesenhuber and Poggio, 1999; Bussey
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and Saksida, 2002). Lesions to the perirhinal cortex (PRC), a
medial temporal lobe structure situated at the anterior end of the
VVS, impair object discrimination based on attribute configura-
tion but spare discrimination based on individual attributes
(Bussey et al., 2005; Bartko et al., 2007; Murray et al., 2007).
Neuroimaging studies have shown that blood oxygenation level
dependent (BOLD) functional magnetic resonance imaging
(fMRI) and regional cerebral blood flow positron emission to-
mography signals in the human PRC are more sensitive to multi-
attribute configuration than to the component attributes of
objects, whereas the lateral occipital cortex (LOC) demonstrates
higher sensitivity to single attributes compared with anterior
regions of the VVS (Devlin and Price, 2007; Erez et al., 2016).
This suggests that configural object recognition is supported by
the PRC and that individual attribute representations at earlier
stages of object processing are sufficient for object recognition or
discrimination under certain conditions.

Leading neuroeconomic models propose that the ventro-
medial prefrontal cortex (vmPFC) encodes subjective value
across stimuli as a common currency to support flexible de-
cision-making (Chib et al., 2009; Levy and Glimcher, 2012;
Delgado et al., 2016). Although many of these studies pre-
sented multiattribute objects (e.g., foods, trinkets), they
have only rarely considered how the values of multiple
attributes are combined. A handful of fMRI studies exam-
ined the neural correlates of options explicitly composed of
multiple attributes. These have found that signal within the
vmPFC reflects the integrated value of the component
attributes when each independently contributes to value,
that is, when value is associated with individual elements of
the option (Basten et al., 2010; Philiastides et al., 2010;
Kahnt et al., 2011; Park et al., 2011; Lim et al., 2013; Hunt et
al., 2014; Suzuki et al., 2017; Kurtz-David et al., 2019).
However, these studies did not address whether there are
distinctions in the neural processes underlying value con-
struction based on summing attributes versus value emerg-
ing from the holistic configuration of attributes.

Recent evidence argues that the distinction between con-
figural and elemental processing is important in valuation,
just as it is known to be important in complex object recog-
nition. We recently found that lesions to the vmPFC in
humans impair decisions between objects when value is
associated with the configural arrangement of attributes but
spare decisions when value is associated with individual
attributes (Pelletier and Fellows, 2019). Here, we employ a
triangulation approach (Munafò and Smith, 2018) to fur-
ther test this hypothesis using fMRI and eye tracking to
examine the neural and behavioral correlates of multiattri-
bute valuation in healthy women and men.

We hypothesized that estimating the values of multiattribute
visual objects in a condition where value is predicted by attribute
configuration would engage the vmPFC as well as regions
involved in complex object recognition (i.e., PRC) to a greater
extent than an elemental condition where individual attributes
contribute independently to overall object value. We further
hypothesized that fixations to and fixation transitions between
value-predictive attributes would differ between configural and
elemental value conditions. We report data from two independ-
ent samples of healthy participants, one a behavioral and eye-
tracking study and another that also included fMRI. An addi-
tional pilot study was conducted to determine the fMRI study
sample size. All hypotheses and analysis steps were preregistered
(https://osf.io/4d2yr).

Materials and Methods
Data were collected from three independent samples using the same ex-
perimental paradigm. This paradigm involved first learning and then
reporting the monetary value of novel, multiattribute pseudo objects
under elemental or configural conditions. We collected an initial behav-
ioral sample to characterize learning, decision-making, and eye-gaze pat-
terns. We then undertook a pilot fMRI study to estimate the sample size
needed to detect effects of interest. Informed by this pilot study, a third
sample underwent fMRI and eye tracking. Data from the behavioral
sample informed the preregistration of eye-tracking hypotheses to be
replicated in the fMRI sample.

Participants
Participants were recruited from the Tel Aviv University community via
online advertising and through the Strauss Imaging Center’s participant
database. Participants were healthy volunteers, with normal or cor-
rected-to-normal vision, without any history of psychiatric, neurologic,
or metabolic diagnoses, and not currently taking psychoactive medica-
tion. The study was approved by the Ethics Committee at Tel Aviv
University and the Institutional Review Board of the Sheba Medical
Center in Tel-Hashomer, Israel.

Behavioral study. Forty-two participants were recruited to take part
in the behavioral experiment. Nine participants were excluded because
of poor task performance according to the exclusion criteria detailed
below. The final behavioral sample included 33 participants (15 females
and 18 males, mean age 22 years, range 18–32). Eye-tracking data were
not available for three participants because of poor calibration of the eye
tracker.

fMRI pilot study. Imaging data were collected in a pilot sample of
eight participants (four females and four males, mean age 25 years, range
21–31) to calculate the sample size needed to detect a significantly stron-
ger modulation of value in the configural compared with the elemental
trials in the vmPFC at an a level of 0.05 with 95% power. Power calcula-
tions were conducted with the fMIPower software (http://fmripower.
org/; Mumford and Nichols, 2008), averaging b weights for the contrast
of interest across all voxels of a predefined brain region. Based on these
calculations, we preregistered 42 participants. This sample size was also
sufficient to detect a significant effect for the parametric modulation of
value in the configural condition alone in the vmPFC (38 participants
needed for 95% power). The vmPFC region of interest (ROI) and the
model used to analyze the pilot data are described below. Imaging data
used for power and sample-size calculations are available on OpenNeuro
(https://openneuro.org/datasets/ds002079/versions/1.0.1), and the code
used to create the power curves and the vmPFC ROI mask are available
with the preregistration document (https://osf.io/4d2yr). Pilot partici-
pants were not included in the final sample.

fMRI study. Fifty-five participants were recruited to take part in the
full fMRI experiment. Nine participants were excluded because of poor
task performance in the scanner, according to the preregistered exclu-
sion criteria. Three participants were excluded because of magnetic reso-
nance (MR) artefacts, and one participant was excluded because of
excessive motion inside the scanner based on fMRIPrep outputs
(Esteban et al., 2019). The final fMRI sample thus included 42 partici-
pants (21 females and 21 males, mean age 27 years, range 18–39). Eye-
tracking data could not be collected in nine participants because of
reflections caused by MR-compatible vision-correction glasses.

Experimental paradigm
The experimental paradigm was adapted from Pelletier and Fellows
(2019). Participants learned the monetary values of novel multiattribute
pseudo objects (fribbles) in two conditions (configural and elemental),
after which they were scanned while bidding monetary amounts for the
objects. Fribbles were developed to study object recognition and are
designed to mimic real-world objects (Barry et al., 2014). They are com-
posed of a main body and four appendages, which we refer to as attrib-
utes, each available in three variations. Two fribble sets were used, one
for each condition (randomly assigned for each participant); each set
had the same body but different appendages.
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In the configural condition, value was associated
with the unique configuration (conjunction) of two
attributes. In the elemental condition, value was associ-
ated with each of two individual attributes, which then
could be combined to obtain the value of the whole
object. Four different object sets were used across par-
ticipants; the object set condition assignment was
counterbalanced. Learning order was counterbalanced
across participants (configural followed by elemental
or vice versa), and the order of object presentation was
randomized in all experiment phases. An example of
the stimuli as well as the value associations are shown
on Figure 1.

Learning phase. Participants were instructed before
the experiment that they were acting as business own-
ers, buying and selling novel objects. Before acquiring
objects in their own inventory, they began by observing
objects being sold at auction to learn their market
price.

The learning phase included five learning blocks
and one learning probe per condition. A block began
with a study slide displaying all six objects to be learned
in that condition, along with the average value of each
object, giving the participant the opportunity to study
the set for 60 s before the learning trials (Fig. 2A). The
learning trials began with the presentation of an object
in the center of the screen above a rating scale, asking
“How much is this item worth?” Participants had 5 s to
provide a value estimate for the object, using the left
and right arrow keys to move a continuous slider and
the down arrow key to confirm their response. Feedback was then pro-
vided indicating the actual selling price of the object, with a bright yellow
bar and the corresponding numerical value overlaid on the same rating
scale. The object, rating slider, and feedback were displayed for 2 s, fol-
lowed by 2 s fixation cross. Each learning block presented all six objects
six times each in random order for a total of 36 trials. After five learning
blocks, learning was assessed with a probe consisting of 24 trials of the
six learned objects presented four times each, in random order. The
structure of probe trials was identical to the learning trials, but no feed-
back was given after the value rating.

In the elemental condition, values were associated with individ-
ual attributes. During the learning blocks, the object’s body and
irrelevant attributes were occluded with a 50% transparent white
mask, making the specific value-predictive attribute more salient

(Fig. 1). Participants were told that value was associated only with
the unmasked attribute. During the learning probe, objects were
presented without masks, so all attributes were equally salient, and
participants were instructed to sum the values of the two attributes
they had learned.

In the configural condition, objects were displayed without masks
during the entire learning phase, and the value of the object was associ-
ated with the unique configuration of two attributes. In this condition,
participants could not learn object values by associating value with any
single attribute because each attribute was included in both a relatively
high-value and a relatively low-value object, as depicted in the object-
value table (Fig. 1).

After learning, each of the six objects of the elemental condition had
the same overall value (sum of the two attribute values) as one of the six
configural objects. The object set in each condition contained six value-

Figure 2. Experimental paradigm. A, Structure of a learning block. B, Trial structure of the bidding (fMRI) task.

Figure 1. Stimuli and conditions. Stimuli and conditions. Example of fribble sets and object-average value associations. In the elemental condition, each fribble presented in the bidding
phase had two individually value-predictive attributes that could be summed to estimate the value of the whole object. Objects were masked during the learning blocks so that value was
clearly associated with a single salient attribute. In the learning probe and bidding phase, the unmasked objects were shown, and object value was assessed by summing the individual attrib-
ute values (top right). In the configural condition, each fribble had two attributes that reliably predicted value only when appearing together, that is, in configuration.
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relevant attributes, each of which was part of two different objects in
each set.

Bidding task. After learning, participants placed monetary bids on
the learned objects to acquire them for their inventory while eye move-
ments were tracked, and in the fMRI studies, fMRI was acquired. The
task comprised four runs (scans) each containing the 12 objects (6 per
condition) repeated twice in random order for a total of 24 trials. The
structure of a bidding trial is depicted in Figure 2B. Before the bidding
task, participants performed one practice run to familiarize themselves
with task timings.

To make the task incentive compatible, participants were instructed
beforehand that all auctions would be resolved at the end of the session.
If they bid sufficiently close to [within 5 Israeli shekels (ILS)], or higher
than the true (instructed) object’s value, this object would be acquired
and placed in their inventory. After the task, we would buy all the items
in their inventory plus a profit margin (similar to the situation where
stores sell their products for a higher price than they paid from the man-
ufacturer). The profit margin was 25%, although the exact margin was
unknown to participants. The bonus compensation was calculated by
summing the total amount paid by the experimenter to buy the partici-
pant’s inventory, minus the total of the bids placed by the participant to
acquire these items. This total profit was then converted on a scale with
a minimum of 0 ILS (i.e., participants could not lose money) and a maxi-
mum of 10 ILS (equivalent to ;$3 US). In other words, if participants
generally bid substantially higher or lower than the instructed value, the
bonus compensation tended toward zero. If they bid generally very close
to the instructed value, the bonus compensation was close to 10.

Anatomical scans and functional localizer task. After the bidding
task, fluid attenuated inversion recovery and T1 anatomic scans and B0
field maps were acquired for the fMRI samples, with the parameters
detailed below. Following structural scan acquisition, participants per-
formed a functional localizer task adapted from Watson et al. (2012) to
define participant-specific visual regions of interest for analysis of the
bidding task. Images from four categories (faces, scenes, objects, and
scrambled objects) were presented in blocks of 15 s, each containing 20
images displayed for 300ms with a 450ms interstimulus interval.
Participants were instructed to press a button using the index finger of
the right hand when an image was repeated twice in a row (1-back task).
The task comprised four runs of 12 blocks each. A 15 s fixation block
ended each run. One run contained three blocks of each image category
in a counterbalanced order.

Data acquisition
Behavioral data. All phases of the experiment were programmed in

MATLAB (catalog #R2017b, MathWorks), using the Psychtoolbox
extension (PTB-3; Brainard, 1997). During the learning phase, and dur-
ing the bidding task for the behavioral sample, stimuli were displayed on
a 21.5 inch monitor, and responses were made using a standard key-
board. We recorded value rating and reaction time for each learning
trial. During the bidding task in the fMRI, stimuli were presented on a
NordicNeuroLab 32 inch LCD display (1920� 1080 pixels resolution,
120Hz image refresh rate) that participants viewed through a mirror
placed on the head coil. Participants responded using an MR-compatible
response box. Value rating, reaction time, and the entire path of the rat-
ing slider were recorded for each trial.

Eye-tracking data. We recorded eye-gaze data during the bidding
task using the Eyelink 1000 Plus (SR Research), sampled at 500Hz.
Nine-point calibration and validation were conducted before each run of
the task.

fMRI data. Imaging data were acquired using a 3T Siemens
MAGNETOM Prisma MRI scanner and a 64-channel head coil. High-re-
solution T1-weighted structural images were acquired for anatomic local-
ization using a magnetization-prepared rapid gradient echo pulse
sequence [repetition time (TR) = 2.53 s, echo time (TE) = 2.99 ms,
flip angle (FA) = 7°, field of view (FOV) = 224� 224� 176 mm,
resolution = 1� 1 � 1 mm].

Functional imaging data were acquired with a T2* weighted multi-
band echo planar imaging protocol (TR= 1200ms, TE= 30ms, FA= 70°,
multiband acceleration factor of four and parallel imaging factor iPAT

of two, scanned in an interleaved fashion). Image resolution was 2�
2 � 2 mm voxels (no gap between axial slices), FOV=97� 115� 78
mm (112� 112� 76 acquisition matrix). All images were acquired at a
30° angle off the anterior-posterior commissures line to reduce signal
dropout in the ventral frontal cortex (Deichmann et al., 2003). We
also calculated field maps (b0) using the phase encoding polarity
(PEPOLAR) technique, acquiring three images in two opposite phase
encoding directions (anterior–posterior and posterior–anterior), to cor-
rect for susceptibility-induced distortions.

Data exclusion
Eye-tracking data were discarded for a trial if,70% of samples could be
labeled as fixations. Participants who performed poorly in the bidding
fMRI task were excluded from analysis based on preregistered exclusion
criteria. Specifically, participants with average rating error �15 ILS in at
least one condition, or an average rating error �5 ILS for any single
object were excluded. These criteria ensured that no participant using
heuristics to estimate value (i.e., rough guessing based on a reduced
number of attributes) was included in the final sample. In the behavioral
study, three participants were excluded because of large average rating
error in the elemental condition (Those participants seemingly failed to
sum the two attributes and instead rated based on only one.). Three par-
ticipants were excluded because of large average rating error in the con-
figural condition, and three were excluded because of large average
rating error in both conditions. In the fMRI study, three participants
were excluded because of large average rating error in the elemental con-
dition (One gave seemingly random ratings, and two failed to sum the
attributes.). Two participants were excluded because of large average rat-
ing error in the configural condition. One participant was excluded
because of large error on two specific objects in the configural condition.
Finally, three participants were excluded because of large average rating
error in both conditions.

Statistical analysis
Behavioral data analysis. Learning outside the scanner was assessed

by the change in average value rating error across learning blocks. Error
was defined as the absolute difference between the rating provided by
the subject and the true value of the object or attribute. A repeated meas-
ures ANOVA with learning block (five levels) and condition (two levels)
as within-subject factors was used to analyze error across learning trials.
Group-level value rating error in the learning probes was compared
between conditions using a paired-sample t test.

Performance in the bidding task inside the scanner was analyzed by
calculating the average error (absolute difference between bid value and
instructed value) across the 6 repetitions for each of the 12 objects, as
well as the average error by condition. Group-level bidding error was
compared between conditions using a paired sample t test. Rating reac-
tion times were similarly compared between conditions.

Eye-tracking data analysis. Eye-tracking data files in EyeLink (EDF
format) were converted using the Edf2Mat MATLAB Toolbox. Periods
of eye blinks were removed from the data, after which the x and y coor-
dinates and the duration of each fixation during the 3 s of object presen-
tation were extracted. We identified each fixation according to whether
it fell on one or the other of the learned attributes or neither. The attrib-
ute areas of interest (AOIs) were defined by drawing the two largest
equal-sized rectangles centered on the attributes of interest that did not
overlap with each other. The same two AOIs were used for the six
objects within each set. All AOIs covered an equal area of the visual field,
although the positions varied between object sets. For an example of the
preregistered AOIs, see Figure 6B. AOIs for all object sets along with
their exact coordinates in screen pixels are reported in the preregistra-
tion document (https://osf.io/4d2yr).

For each subject and each condition, we calculated the average num-
ber of fixations per trial and the number of fixations in each of the AOIs.
We also calculated the average duration of individual fixations within
each AOI and the total time spent fixating on each AOI. Finally, we cal-
culated the average number of transitions from one attribute AOI to the
other. We counted as a transition every instance of a fixation falling on
an AOI immediately preceded by a fixation falling on the other AOI.

Pelletier et al. · A Role for vmPFC in Configural Object Evaluation J. Neurosci., June 9, 2021 • 41(23):5056–5068 • 5059

https://osf.io/4d2yr


These variables were compared between conditions at the group-level
using paired sample t tests.

fMRI data preprocessing. Raw imaging data in DICOM format were
converted to NIfTI format and organized to fit the Brain Imaging Data
Structure (BIDS; Gorgolewski et al., 2016). Facial features were removed
from the anatomic T1-weighted (T1w) images using PyDeface (https://
github.com/poldracklab/pydeface). Preprocessing was performed using
fMRIPrep version 1.3.0.post2 (RRID:SCR_016216; Esteban et al., 2019),
based on Nipype version 1.1.8 (RRID:SCR_002502; Gorgolewski et al.,
2011).

For anatomical data preprocessing, the T1w image was cor-
rected for intensity nonuniformity with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with Advanced Normalization
Tools (ANTs) version 2.2.0 (RRID:SCR_004757; Avants et al.,
2008;) and used as T1w-reference throughout the workflow. The
T1w-reference was then skull stripped using antsBrainExtraction.
sh (ANTs 2.2.0), using OASIS30ANTs as target template. Brain
surfaces were reconstructed using recon-all (FreeSurfer 6.0.1;
RRID:SCR_001847; Dale et al., 1999), and the brain mask esti-
mated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray matter of Mindboggle (RRID:SCR_
002438; Klein et al., 2017). Spatial normalization to the ICBM 152
Nonlinear Asymmetrical template version 2009c (RRID:SCR_
008796; Fonov et al., 2009) was performed through nonlinear
registration with antsRegistration (ANTs 2.2.0), using brain-
extracted versions of both T1w volume and template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white matter (WM) and
gray matter (GM) was performed on the brain-extracted T1w using
FAST version 5.0.9 (FSL; RRID:SCR_002823; Zhang et al., 2001).

With functional data preprocessing, for each of the eight BOLD runs
per subject (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep. A deforma-
tion field to correct for susceptibility distortions was estimated based on
two echo-planar imaging references with opposing phase-encoding
directions, using 3dQwarp (Cox and Hyde, 1997; Analysis of Functional
NeuroImages, 20160207). Based on the estimated susceptibility distor-
tion, an unwarped BOLD reference was calculated for a more accurate
coregistration with the anatomic reference. The BOLD reference was
then coregistered to the T1w reference using bbregister (FreeSurfer),
which implements boundary-based registration (Greve and Fischl,
2009). Coregistration was configured with 9 df to account for distortions
remaining in the BOLD reference. Head-motion parameters with respect
to the BOLD reference (transformation matrices, and six corresponding
rotation and translation parameters) were estimated before any spatio-
temporal filtering using MCFLIRT version 5.0.9 (FSL; Jenkinson et al.,
2002). The BOLD time series (including slice-timing correction when
applied) were resampled onto their original, native space by applying a
single composite transform to correct for head motion and susceptibility
distortions. These resampled BOLD time series are referred to as prepro-
cessed BOLD in original space, or just preprocessed BOLD. The BOLD
time series were resampled to Montreal Neurological Institute (MNI)
152NLin2009cAsym standard space, generating a preprocessed BOLD
run in MNI152NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of
fMRIPrep. Several confounding time series were calculated based on the
preprocessed BOLD: frame-wise displacement (FD), DVARS, and three
region-wise global signals. FD and DVARS were calculated for each
functional run, both using their implementations in Nipype (following
the definitions by Power et al., 2014). The three global signals were
extracted within the CSF, the WM, and the whole-brain masks.
Additionally, a set of physiological regressors were extracted to allow for
component-based noise correction (CompCor; Behzadi et al., 2007).
Principal components were estimated after high-pass filtering the pre-
processed BOLD time series (using a discrete cosine filter with 128 s cut-
off) for the two CompCor variants: temporal (tCompCor) and anatomic
(aCompCor). Six tCompCor components are then calculated from the
top 5% variable voxels within a mask covering the subcortical regions.

This subcortical mask is obtained by heavily eroding the brain mask,
which ensures it does not include cortical GM regions. For aCompCor,
six components are calculated within the intersection of the aforemen-
tioned mask and the union of CSF and WM masks calculated in T1w
space, after their projection to the native space of each functional run
(using the inverse BOLD-to-T1w transformation). The head-motion
estimates calculated in the correction step were also placed within the
corresponding confounds file. All resamplings were performed with a
single interpolation step by composing all the pertinent transformations
(i.e., head-motion transform matrices, susceptibility distortion correc-
tion, and coregistrations to anatomic and template spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to minimize the smooth-
ing effects of other kernels (Lanczos, 1964). Nongridded (surface) resam-
plings were performed using mri_vol2surf (FreeSurfer).

Confound files were created for each scan (each run of each task of
each participant, in TSV format), with the following columns: SD of the
root mean squared intensity difference from one volume to the next
(DVARS), six anatomic component-based noise correction method
(aCompCor), frame-wise displacement, and six motion parameters
(translation and rotation each in three directions) as well as their
squared and temporal derivatives (Friston 24-parameter model; Friston
et al., 1996). A single time point regressor (a single additional column)
was added for each volume with FD value larger than 0.9 to model out
volumes with excessive motion. Scans with .15% scrubbed volumes
were excluded from analysis.

fMRI data analysis
The fMRI data were analyzed using FSL FEAT (fMRI Expert Analysis
Tool; Smith et al., 2004). A general linear model (GLM) was estimated to
extract contrasts of parameter estimate at each voxel for each subject for
each of the four fMRI runs (first-level analysis). Contrasts of parameter
estimate from the four runs were then averaged within participants using
a fixed effect model (second-level analysis). Group-level effects were esti-
mated using a mixed effect model (FSL’s FLAME-1).

The GLM included one regressor modeling the 3 s object presenta-
tion time for configural trials, and one regressor modeling object presen-
tation for elemental trials. The model also included one regressor
modeling object presentation for the configural trials modulated by the
value rating of the object provided on each trial (mean centered) and the
equivalent regressor for elemental trials. We included four regressors
modeling the rating epoch of the trial, with two unmodulated regressors
modeling the rating scale for configural trials and elemental trials sepa-
rately, and two regressors modeling the rating scale epoch modulated by
value ratings (mean centered) for configural trials and elemental trials
separately. The duration of the rating event in these four regressors was
set to the average rating reaction time across all participants and runs.
Rating reaction times were accounted for in the model using a separate
regressor modeling the rating epoch for all trials, modulated by the trial-
wise reaction time (mean centered). The duration was set to the maxi-
mum response time of 3 s in cases where the time limit was reached. All
regressors included in this GLM were convolved with a canonical dou-
ble-g hemodynamic response function. Their temporal derivatives were
also included in the model, with the motion and physiological confounds
estimated by fMRIPrep as described above.

Regions of interest. A vmPFC ROI was defined using the combina-
tion of the Harvard-Oxford regions frontal pole, frontal medial cortex,
paracingulate gyrus and subcallosal cortex, falling between MNI x =�14
and 14 and z, 0, as in Schonberg et al. (2014). This ROI was used for
small volume correction where specified.

In addition, we defined four ROIs along the ventral visual stream of
the brain; the perirhinal cortex (PRC), parahippocampal place area
(PPA), fusiform face area (FFA) and the lateral occipital complex (LOC)
using functional localizer data, as in (Erez et al., 2016). The PRC was
defined based on a probabilistic map (Devlin and Price, 2007) created by
superimposing the PRC masks of 12 subjects, segmented based on ana-
tomic guidelines in MNI-152 standard space. We thresholded the proba-
bilistic map to keep voxels having .30% chance of belonging to the
PRC, as in previous work (Erez et al., 2016). The LOC was defined as the
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region located along the lateral extent of the occipital pole that
responded more strongly to objects than scrambled objects (p , 0.001,
uncorrected). The FFA was defined as the region that responded more
strongly to faces than objects. The PPA was defined as the region that
responded more strongly to scenes than to objects. For each of these
contrasts, a 10 mm radius sphere was drawn around the peak voxel in
each hemisphere using FSL (fslmaths). To analyze brain activity in these
regions during the bidding task, cope images from the second-level anal-
ysis (average of the four runs for each participant) were converted to
percent signal change, before averaging across all voxels within each ven-
tral visual stream ROI. Group-level activations were compared against 0
using one-sample t tests.

Functional connectivity analysis. Functional connectivity was
assessed using generalized psychophysiological interactions (gPPI) anal-
ysis to reveal brain regions where BOLD time series correlate signifi-
cantly with the time series of a target seed region in one condition more
than another (McLaren et al., 2012). The seed region was defined based
on the significant activation cluster found in the group-level analysis for
the configural trials value-modulation contrast, small volume corrected
for the vmPFC ROI (see Fig. 4A). The seeds’ neural response to configu-
ral and elemental trials were estimated by deconvolving the mean BOLD
signal of all voxels inside the seed region (Gitelman et al., 2003).

The gPPI-GLM included the same regressors as the main GLM
described above, plus two PPI regressors of interest, one regressor mod-
eling the seed region’s response to configural trials and one regressor
modeling the seed region’s response to elemental trials. These regressors
were obtained by multiplying the seed region time series with an indica-
tor function for object presentation of the corresponding condition, and
then reconvolving the result with the double-g hemodynamic function.
The model additionally included one regressor modeling the BOLD
time-series of the seed region.

Inference criteria
For behavioral and eye-tracking analysis, we used the standard threshold
of p , 0.05 for statistical significance, and we report exact p values and
effect sizes for all analyses. Neuroimaging data are reported at the group
level with statistical maps thresholded at Z . 3.1 and cluster-based
Gaussian Random Field corrected for multiple comparisons with a
(whole-brain corrected) cluster significance threshold of p , 0.05. We
report analyses restricted to the vmPFC ROI using the same inference
criteria, with increased sensitivity to detect effects in this region defined
a priori because of fewer comparisons (small volume correction).
Ventral visual stream ROI results are reported using the statistical
threshold of p , 0.05, Bonferroni corrected for four comparisons (the
number of ROIs; p, 0.0125).

Deviations from preregistration
The most substantial deviation from the preregistered analysis con-
cerns the main GLM defined for fMRI analysis. We controlled for
reaction times differently from what was stated in the preregistra-
tion; this was done because of a mistake in the preregistered analy-
sis plan that proposed an approach different from the usual
process of accounting for reaction time (Schonberg et al., 2014;
Botvinik-Nezer et al., 2020; Salomon et al., 2020). We also con-
ducted supplementary fMRI analyses including accuracy confound
regressors in the GLM after behavioral analysis revealed a trend
difference in accuracy between conditions. This analysis did not
yield substantially different results, and we thus report results
from the model without accuracy regressors, as preregistered.

Data and code accessibility
Unthresholded whole-brain statistical maps are available on NeuroVault.
org at https://neurovault.org/collections/9558/. Neuroimaging data neces-
sary to recreate all analyses are available in BIDS format on OpenNeuro at
https://openneuro.org/datasets/ds002994/versions/1.0.1. Behavioral and
eye-tracking data, codes for behavior, eye-tracking and fMRI analysis, and
all experiment codes are available on GitHub at https://github.com/
GabrielPelletier/fribblesFMRI_object-value-construction.

Results
Behavior
We first present the behavioral results from the behavioral and
fMRI studies to establish the replicability of the behavioral
effects.

Learning phase
Participants learned the value of novel multiattribute objects
under two conditions, elemental and configural. Learning behav-
ior differed between conditions in both the behavioral and the
MRI sample (This phase of the task was performed outside the
scanner in both studies.), with configural associations being gen-
erally harder to learn than elemental ones, as detailed below.

Value rating errors decreased across learning blocks and were
overall higher in the configural condition (Fig. 3A). A repeated
measures ANOVA with block and condition as within-subject
factors, revealed a main effect of block (behavioral sample,
F(4,128) = 58.21, p , 0.001, h 2

p = 0.45; fMRI sample, F(4,164) =
60.73, p , 0.001, h 2

p = 0.40) and a main effect of condition (be-
havioral sample, F(1,32) = 372.14, p , 0.001, h 2

p = 0.56; fMRI
sample, F(1,41) = 470.84, p, 0.001, h 2

p = 0.56) on value rating
error. We also found a significant block by condition interaction
(behavioral sample, F(4,128) = 37.98, p , 0.001, h 2

p = 0.35; fMRI
sample, F(4,164) = 30.20, p , 0.001, h 2

p = 0.25). This interaction
reflects that error rates were more similar across conditions as
learning wore on, although the rating error remained signifi-
cantly greater in the configural compared with the elemental
condition on the last (fifth) learning block (paired-sample t test,
behavioral sample, t(32) = 4.69, p , 0.001, Cohen’s d = 0.817;
fMRI sample, t(41) = 6.46, p, 0.001, Cohen’s d = 0.90).

Reaction times also decreased across learning blocks
(main effect of block, behavioral sample, F(4,128) = 7.17 p ,
0.001, h 2

p = 0.09; fMRI sample, F(4,164) = 26.38, p, 0.001,
h 2

p = 0.22). Reaction times were significantly faster in the
elemental compared with the configural condition (main
effect of condition, behavioral sample, F(1,32) = 467.58,
p, 0.001, h 2

p = 0.62; fMRI sample, F(1,41 = 391.35, p , 0.001,
h 2

p = 0.51). There was no significant block by condition
interaction in the behavioral sample (F(4,128) = 0.387, p =
0.818, h 2

p = 0.005), but there was a significant interaction in
the fMRI sample (F(4,164) = 4.35, p = 0.002, h 2

p = 0.05).
After five learning blocks, participants completed a learning

probe without feedback outside the scanner. The learning probe
was designed to assess the ability to assign value to the objects
during extinction. It was also important to assess the ability to
sum two attribute values in the elemental condition, which only
included single-attribute value associations in the learning
blocks. In the learning probe, accuracy was lower in the elemen-
tal condition compared with the configural condition in the be-
havioral sample (paired-sample t test, t(32) = 2.13, p = 0.041,
Cohen’s d = 0.372) but was not significantly different between
conditions in the fMRI sample (t(41) = 1.30, p = 0.201, Cohen’s
d = 0.201). Participants were slower in the elemental compared
with the configural condition in both samples (behavioral sam-
ple, t(32) = 5.47, p, 0.001, Cohen’s d = 0.953; fMRI sample,
t(41) = 9.56, p, 0.001, Cohen’s d = 1.48).

Bidding task
After learning, participants were shown objects from the config-
ural and elemental sets and were asked to bid. Participants in the
fMRI study performed the learning phase outside the scanner
and then performed the bidding stage while scanned with fMRI.
Bidding accuracy was high and not significantly different
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between the configural (mean rating error
= 2.26 Israeli New Shekels (ILS), SD =
1.66) and elemental (mean = 2.04 ILS, SD
= 1.66) conditions for the behavioral sam-
ple (t(32) = 1.08, p = 0.289, Cohen’s d =
0.188; Fig. 3B). In the fMRI sample, bids
tended to be closer to the instructed
value (smaller error) in the elemental
(mean = 2.18 ILS, SD = 1.02) compared
with the configural condition (mean =
2.55 ILS, SD = 1.63), although the dif-
ference did not reach significance, and
the effect was marginal (t(41) = 1.90, p =
0.065, Cohen’s d = 0.293). Value rating
reaction times were not significantly
different between conditions (behav-
ioral sample, t(32) = 1.80, p = 0.081,
Cohen’s d = 0.314; fMRI sample, t(41) =
0.251, p = 0.803, Cohen’s d = 0.038).
Thus, despite some behavioral differen-
ces between conditions in the learning
phase, accuracy and reaction times
were similar across conditions in the
bidding phase, which was the focus of
subsequent analyses.

fMRI signal in the vmPFC selectively
tracks configural object value
We hypothesized that the fMRI signal in
vmPFC would correlate with configural
object value, and that the correlation of
vmPFC signal and value would be stron-
ger for configural compared with elemen-
tal trials. To test this hypothesis, we
preregistered analysis of value modulation
effects at the time of object presentation
in the a priori defined vmPFC region of
interest using small-volume correction.
The hypothesized value signal in the
vmPFC was not detected during the
object presentation epoch but was instead
evident at the time of value rating. Two
clusters in the vmPFC were significantly
correlated with value for configural trials
in the rating phase (Fig. 4A). In contrast,
no activation clusters were found to cor-
relate with value in the elemental trials,
and the direct condition contrast revealed
a significant condition by value interaction in the vmPFC, in
which signal was correlated more strongly with value in configu-
ral compared with elemental trials (Fig. 4B). We decomposed
this interaction by calculating the percent signal change by unit
of value for each condition separately, within the significant acti-
vation cluster for the condition by value interaction (Fig. 4B,
right). This analysis revealed that the condition by value interac-
tion in this cluster was driven by a positive effect of value in the
configural condition (t(41) = 3.144, p = 0.0031) and a negative
effect in the elemental condition (t(41) = 3.531, p = 0.001).
This analysis should be interpreted with caution as it only
examines significant voxels (i.e., circular analysis) and is
only intended as additional information describing the
interaction.

Condition by value interaction in the ventral visual stream
We next tested whether the ventral visual stream ROIs were sen-
sitive to the valuation condition. Our preregistered hypothesis
was that at the time of object presentation, fMRI signals in the
PRC, and not in posterior VVS regions, would be greater in
response to objects learned in the configural condition. We
found no significant main effect of condition on BOLD in the
PRC (p = 0.460) or any other VVS region (LOC, p = 0.286; FFA,
p = 0.731; PPA, p = 0.136; Fig. 5B) at the time of object presenta-
tion, indicating that during this time, VVS ROIs were similarly
activated in response to objects learned in the configural and ele-
mental conditions.

We next examined whether VVS regions were sensitive to
value. We found a significant condition by value interaction in
the PRC: in this region, the BOLD signal associated with value
was stronger for configural compared with elemental trials (p =

Figure 3. Behavior in the learning and bidding phases. A, Accuracy (top) and reaction time (bottom) across
learning blocks in configural and elemental conditions. B, Individual and group average value rating error (top)
and reaction time (middle) in the fMRI bidding phase collapsed across all trials for each condition. Accuracy is
measured in terms of rating error, corresponding to the absolute difference between value rating and the
instructed value of the fribble, averaged across all trials within a learning block or within the bidding phase, by
condition. Instructed value corresponds to the value of the single salient attribute in the learning blocks in the
elemental condition and to the sum of the two attributes in the bidding phase. In the learning blocks and bid-
ding phase in the configural condition, instructed value corresponds to the value associated with the configura-
tion of two attributes. Error bars represent one SD from the group mean.
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0.016, Bonferroni corrected for four ROIs; Fig. 5B). This effect
was specific to the PRC and was not found in more posterior
regions of the VVS (LOC, FFA, and PPA, uncorrected ps .
0.727). We decomposed the interaction by examining value
modulation in configural and elemental trials separately. In the
PRC, there was a nonsignificant trend in BOLD signal to be posi-
tively correlated with value in configural trials (uncorrected p =
0.127), and negatively correlated with value in elemental trials
(uncorrected p = 0.172; Fig. 5B). There was no significant effect
of condition (uncorrected ps. 0.216) and no condition by value
interaction (uncorrected ps . 0.394) in any VVS regions during
the value rating epoch.

Whole-brain examination of configural and elemental
evaluation
ROI analyses revealed value modulation effects in the vmPFC
and a condition by value interaction in the PRC, but no main
effect of condition. We next conducted whole-brain analyses to
ask which brain regions, if any, were on average more active in
configural in contrast to elemental trials regardless of value at the
time of object presentation (Table 1). Table 2 shows the clusters
for the opposite contrast.

Eye movements distinguish between configural and
elemental evaluation
In the previous section, we report different brain regions
recruited in configural and elemental object evaluation. We next
investigated whether eye movements during the same 3 s object

presentation epoch of the bidding task
trials were different between conditions
(Fig. 6A,B). The average number of fixa-
tions made on the whole object was sim-
ilar across conditions (behavioral
sample, t(32) = 1.741, p = 0.091, Cohen’s
d = 0.303; fMRI sample, t(31) = 0.479,
p = 0.635, Cohen’s d = 0.083). However,
we found consistent condition differen-
ces across the two samples in eye move-
ments with respect to fixations to the
value-predictive attributes. Participants
made significantly more transitions
between these attributes in the configu-
ral compared with the elemental condi-
tion (behavioral sample, t(32) = 3.364, p
= 0.002, Cohen’s d = 0.586; fMRI sam-
ple, t(31) = 2.659, p = 0.012, Cohen’s d =
0.463), and the average duration of indi-
vidual fixations was longer in the ele-
mental condition (behavioral sample,
t(32) = 3.611, p = 0.001, Cohen’s d =
0.559; fMRI sample, t(31) = 2.211, p =
0.034, Cohen’s d = 0.385).

Control analyses did not reveal sig-
nificant difference between conditions
in the amount of time spent fixating
areas of the objects not included in the
attributes AOIs (behavioral sample, t(32)
= 0.211, p = 0.827, Cohen’s d = 0.039;
fMRI sample, t(31) = 1.662, p = 0.114,
Cohen’s d = 0.204). Moreover, fixation
duration was not biased toward one
attribute AOI over the other in one con-
dition compared with the other (behav-
ioral sample, t(32) = 0.623, p = 0.536,

Cohen’s d = 0.108; fMRI sample, paired sample t test, t(31) =
1.564, p = 0.128, Cohen’s d = 0.273).

Given these observations, we conducted exploratory (not prereg-
istered) analyses to investigate whether gaze differences between
conditions were related to differences in the brain. For each partici-
pant, we calculated the percent signal change for the configural
minus elemental contrast, averaged across voxels of all significant
clusters more active in configural compared with elemental trials
from the group-level whole-brain analysis (Table 1). We correlated
this brain activation variable with the difference between the average
number of gaze transitions made during the fixed 3 s object presen-
tation epoch in the configural minus the elemental trials. Therefore,
this measure is not dependent on reaction time. This revealed a sig-
nificant positive correlation between the two variables: the greater
the difference in brain activations, the greater the difference in eye
movements (Pearson’s r=0.425, p = 0.015; Fig. 6C). There was no
significant correlation between brain activation and the difference
in average durations of fixations (Pearson’s r = �0.075, p = 0.682)
or the difference between the number of fixations (Pearson’s
r=0.110, p = 0.550).

Functional connectivity analysis
We conducted a preregistered functional connectivity analysis using
gPPI, defining the seed as the significant vmPFC clusters found for
configural trials value modulation (Fig. 4A). The gPPI analysis did
not reveal any clusters across the whole brain and no VVS region

Figure 4. Value-modulated activation clusters during value rating in the vmPFC. A, Clusters where the fMRI signal was sig-
nificantly modulated by value in configural trials. B, Cluster where value modulation was stronger for configural compared
with elemental trials. Results were small volume corrected (SVC) for the preregistered vmPFC region of interest (bright area),
at a cluster-forming threshold of Z . 3.1 and p, 0.05. The companion bar graph shows the average value modulation effect
within the significant activation cluster for configural and elemental trials separately (error bars represent SEM) and is included
for illustration purposes only. The color bar indicates Z statistics. Numbers below slices indicate MNI coordinates.

Pelletier et al. · A Role for vmPFC in Configural Object Evaluation J. Neurosci., June 9, 2021 • 41(23):5056–5068 • 5063



displaying evidence of greater functional connectivity
with the vmPFC seed in configural compared with
elemental trials, or vice versa.

Discussion
Here, using both eye-tracking and fMRI, we show
behavioral and neural evidence for two distinct
mechanisms of assessing the value of multiattri-
bute objects. We found that evaluation of complex
objects relied on different patterns of information
acquisition, indexed by eye movements, and
engaged different brain regions when value was
predicted by configural relationships among attrib-
utes compared with when value could be summed
from the independent values of individual attrib-
utes. Activity in the perirhinal cortex was corre-
lated with value in configural more than elemental
trials during object presentation, whereas at the
time of value rating, vmPFC showed value-modu-
lated signal for configural trials only. Participants
made longer fixations on individual attributes in
the elemental condition and made more gaze tran-
sitions from one attribute to another when viewing
objects in the configural condition. Moreover, at
the participant level, the between-condition differ-
ence in the number of gaze transitions was corre-
lated with the difference in brain activation.

These experiments in three different samples
provide evidence converging with the findings
from a recent study in patients with vmPFC dam-
age using the same type of stimuli (Pelletier and
Fellows, 2019). That lesion study found that
vmPFC damage impaired binary decisions
between fribbles in the configural condition but
not in the elemental condition. The current work
provides additional support for the hypothesis that
vmPFC has a unique role in inferring the value of
objects based on configural information: BOLD
signal in that region was only detectably modu-
lated by object value in the configural and not the
elemental condition. The present study further
argues that evaluation in the configural condition
engages the PRC, a region known to be critical for multiattribute
object recognition, but here for the first time also implicated in
the evaluation of such objects.

We did not find that the total value of an object obtained by
combining two separately learned attribute values was reflected
in the vmPFC fMRI signal. This null result alone cannot rule out
that vmPFC is involved in value integration from multiple ele-
ments. However, together with the finding that damage to
vmPFC did not substantially impair the ability to make choices
based on such values, it suggests the existence of alternate mech-
anisms for value construction under such conditions not requir-
ing vmPFC.

Across published fMRI work, vmPFC is reliably associated
with subjective value (Rushworth and Behrens, 2008; Bartra et
al., 2013). Activity in the vmPFC has also been shown to reflect
the values of items composed of multiple attributes, each mod-
eled as independently predictive of value (Basten et al., 2010; Lim
et al., 2013; Suzuki et al., 2017). Although the assumption of ele-
mental value integration made in these studies was consistent
with their data, it is possible that whole option values were

nonetheless estimated configurally. No previous work has con-
trasted these distinct types of multiattribute valuation, leaving
unclear whether vmPFC value signals reflect elemental or config-
ural assessment. The current findings add to the view that the
vmPFC is not critical for value integration in general but rather
becomes necessary under a narrower set of conditions (Vaidya
and Fellows, 2020).

We propose a more specific account whereby the vmPFC is
required for inferring value from the configural relationships
among lower level attributes. This proposal is not incompatible
with the common finding that vmPFC tracks value. This experi-
ment and the preceding lesion study were designed to distinguish
two modes of valuation, with objects being evaluated in a purely
configural or elemental mode. However, decisions between fa-
miliar everyday objects of the type commonly used in this field
likely involve a mixture of configural and elemental valuation
processes. The frequent finding of value-related signal in vmPFC
across studies may reflect that most decisions involve some
degree of configural evaluation, rather than arguing for a general
role for this region in value assessment under all conditions. This
view might also explain prior observations that patients with

Figure 5. Ventral visual stream regions of interest analysis. A, Regions of interest. The LOC, FFA, and PPA
ROIs shown for a representative participant. The PRC ROI was the same for all participants. Numbers indicate
coordinates in MNI space. B, Percent signal change during the object presentation epoch. Top left shows the
main effect of condition, assessed with the configural minus elemental trials contrast. The top right shows the
condition by value interaction, assessed by contrasting the effect of value modulation in configural trials, minus
the effect of value modulation in elemental trials. Bottom, the value modulation effect for configural and ele-
mental trials separately. Error bars represent SEM. Asterisk indicates significance at p , 0.05 for one sample t
test against zero, after Bonferroni correction for four comparisons.
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vmPFC damage are able to evaluate complex social or aesthetic
stimuli, but seem to draw on different, potentially more elemen-
tal, information to assess the value of such stimuli, compared
with healthy participants (Xia et al., 2015; Vaidya et al., 2018).

In this experiment, elemental decisions may be conceived of
as an arithmetic problem, whereas configural decisions might
rely more on associative memory. Indeed, a reverse inference
analysis using Neurosynth (Yarkoni et al., 2011) revealed that the
brain activation map for the configural minus elemental contrast
was most similar to studies reporting the terms “Retrieval,”
“Episodic” and “Recognition memory.” Although recent theories
argue that value-based decisions are inextricably linked to asso-
ciative memory processes (Weber and Johnson, 2006; Shadlen
and Shohamy, 2016), the normative theories of choice behavior
that have largely guided neuroimaging research on multiattribute
decision-making to date often conceive of value as arising from
an arithmetic linear integration process (Basten et al., 2010; Lim
et al., 2013). Rather than being mutually exclusive, these two
approaches are consistent with the coexistence of configural and
elemental modes of evaluation.

Previous fMRI studies using multivariate approaches found
value signals for elemental objects in vmPFC activity patterns
but not in univariate analyses as used here (Kahnt et al., 2011).
Another study found evidence for value signals in activity pat-
terns in vmPFC in a configural condition (Kahnt et al., 2010),
suggesting that the vmPFC is involved in both modes of evalua-
tion. The current data are not ideally suited for a multivariate
classifier approach because of the dependence between the sen-
sory properties of the objects and their value (Kahnt, 2018). We
cannot rule out that elemental value would be detectable in the
vmPFC by analyzing activation patterns here, although our prior
finding of intact elemental valuation following vmPFC damage
argues that even if such signal is present in vmPFC, it is not criti-
cal for behavior.

The current work also addressed whether regions known to
be involved in complex object recognition are likewise involved
in assessing the values of such options. We found that fMRI VVS
signals were differently sensitive to value across conditions.
Specifically, activity in the PRC was modulated by value more for
configural compared with elemental trials. There are previous

Table 2. Clusters with significantly more activity during elemental compared with configural object presentation

Cluster Voxels Anatomic region included in cluster Voxels in region MNI (x, y, z) Peak Z p

1 76 Precentral gyrus (R) 76 54, �2, 40 5.29 0.007
2 207 Supplementary motor cortex (L) 164 �6, 2, 64 6.08 1.31e-06

Superior frontal gyrus (L) 17
3 308 Precentral gyrus (L) 206 �64, 8 , 22 5.39 6.08e-09

Inferior frontal gyrus pars opercularis (L) 19
4 485 Precentral gyrus (L) 362 �56, �4, 38 5.57 1.79e-12

Postcentral gyrus (L) 15

Results were whole-brain cluster-corrected, at a cluster-forming threshold of Z . 3.1 and p , 0.05. Thresholded and unthresholded maps can be visualized on NeuroVault (https://neurovault.org/collections/9558/).

Table 1. Clusters with significantly more activity during configural compared with elemental object presentation

Cluster Voxels Anatomic region included in cluster Voxels in region Peak Z MNI (x, y, z) P

1 67 Middle frontal gyrus (R) 55 4.53 46, 14, 50 0.014
2 78 Caudate (R) 34 4.88 8, 6, 6 0.006

Thalamus (R) 11
3 171 Precuneus cortex (R) 160 4.17 14, �68, 28 1.06e-05
4 206 Inferior frontal gyrus pars triangularis (R) 54 4.84 56, 28, 22 1.37e-06

Middle frontal gyrus (R) 45
Inferior frontal gyrus pars opercularis (R) 13
Frontal pole (R) 9

5 259 Superior lateral occipital cortex (L) 173 4.19 �40, �70, 44 5.96e-08
Angular gyrus (L) 38

6 348 Superior lateral occipital cortex (R) 282 4.64 42, �74, 48 8.64e-10
Angular gyrus (R) 14

7 426 Superior frontal gyrus (L) 207 5.42 �2, 36, 42 2.36e-11
Paracingulate gyrus (L) 120
Superior frontal gyrus (R) 32
Paracingulate gyrus (R) 21

8 429 Cerebellum (R) 361 5.34 �14, �82, �34 2.06e-11
9 623 Cerebellum (L) 511 5.76 14, �72, �30 6.27e-15
10 1081 Precuneus cortex (L) 673 4.99 2, �68, 60 5.07e-22

Precuneus cortex (R) 154
Cuneal cortex (L) 48
Cuneal cortex (R) 9
Supracalcarine cortex (L) 7

11 1381 Frontal pole (L) 471 5.11 �38, 22, �4 4.11e-26
Middle frontal gyrus (L) 195
Inferior frontal gyrus pars triangularis (L) 145
Frontal orbital cortex (L) 136
Insular cortex (L) 32
Inferior frontal gyrus pars opercularis (L) 16

Results were whole-brain cluster corrected, at a cluster-forming threshold of Z . 3.1 and p , 0.05. Thresholded and unthresholded maps can be visualized on NeuroVault (https://neurovault.org/collections/9558/).
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reports of value-correlated signal across
the VVS, including in the primary visual
cortex (Serences, 2008; Nelissen et al.,
2012); lateral occipital complex (Persichetti
et al., 2015); the PRC (Mogami and
Tanaka, 2006), and several of these regions
combined (Arsenault et al., 2013; Kaskan
et al., 2017). Across studies, reward has
been paired with stimuli ranging in com-
plexity from simple colored gratings to
complex objects, but no work previously
contrasted conditions in which evaluation
relied on characteristics represented at dif-
ferent stages of the VVS hierarchy. Our
findings suggest a selective involvement of
the PRC in encoding value when it is asso-
ciated with the high-level (i.e., configural)
object representations that this region sup-
ports. This is compatible with previous
findings that the change in value of faces
and objects is associated with changes in
face and object processing regions, res-
pectively (Botvinik-Nezer et al., 2020;
Salomon et al., 2020), arguing that value
learning and storage occurs partly through
experience-dependent plasticity in sensory
cortex (Schonberg and Katz, 2020).

A condition by value interaction for
PRC activity was only observed during
object presentation, on average 6 s before
value rating, when value-related signals
were detected in the vmPFC, arguing
against the possibility that value-related
PRC activation is driven by the vmPFC.
This finding rather suggests that the VVS,
in addition to being involved in value
learning, is also involved in developing
value representations during object recog-
nition, with vmPFC activation following
later in the decision process. This
is consistent with electrophysiological
recordings in macaques, which reported
value sensitivity in PRC neurons at
;200ms after stimulus onset (Mogami
and Tanaka, 2006), whereas other work
detected value selective signals only after
400–500ms in the orbitofrontal cortex
(Wallis and Miller, 2003; Kennerley et al.,
2009). Electroencephalography in humans likewise revealed
value-correlated signals in response to reward-paired objects
emerging earlier in the occipital cortex than in the prefrontal cor-
tex (Larsen and O’Doherty, 2014). With these data, the current
work is compatible with the idea that value representations
emerge gradually from the onset of sensory processing and are
refined incrementally until action selection (Yoo and Hayden,
2018). This framework further helps in interpreting the signifi-
cant condition by value interaction in PRC signals, despite non-
significant (but trending) effects of value: at this lower level stage
of the putative decision-making hierarchy, value-related signals
would be expected to interact with the object recognition proc-
esses that this region supports and not as closely related to the
behavioral output (e.g., value ratings) compared with later stages
such as the vmPFC.

We also found systematic differences in eye gaze patterns
between conditions, replicated in two samples. Moreover, we
found that the greater the difference in gaze transitions in the
configural compared with the elemental trials, the greater the dif-
ference in brain activation between conditions. The brain regions
included in the correlation analysis (Table 1) overlap with
regions previously associated with the sensorimotor aspect of
gaze behavior (e.g., frontal eye fields, posterior parietal cortex,
cerebellum) and with those associated with the cognitive control
of gaze, involving memory and planning (e.g., lateral PFC, cau-
date, thalamus; Sweeney et al., 2007). This brain-gaze correlation
might reflect both the cognitive processes underlying multiattri-
bute evaluation in different conditions and visuomotor con-
founds associated with the generation of saccades. Further
studies will be needed to replicate and extend this exploratory
finding.

Figure 6. Eye-tracking results. A, Average number of fixations per trial (top), average duration of individual fixations on
attribute AOIs (middle), and average number of transitions between attribute AOIs per trial (bottom). Error bars represent 1
SD from the group mean; * indicates significant differences between conditions at p , 0.05, ** p , 0.01. B, Example of
eye gaze data for one representative trial. Circles represent fixations, and their diameter indicate the relative fixation dura-
tion. The first fixation is identified (1) with the subsequent fixations of the scan path indicated by the red lines. Dashed boxes
represent areas of interest for the two value-relevant attributes. In this example, there were six fixations and two transitions
(the scan path crosses twice from 1 attribute AOI to the other). C, Significant correlation between gaze transitions and brain
activations across participants of the fMRI sample. The y-axis displays the participant-level activation contrast for configural
minus elemental trials at the time of object presentation, averaged across the brain voxels displaying a significant main effect
of condition at the group level (Table 1). Data points represent individual participants, superimposed with the best-fitting lin-
ear regression line (dashed); r value indicates Pearson’s correlation. Curves on the top and right-hand side of the plot repre-
sent the distribution of the x- and y-axis variables, respectively.
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Sequential sampling models have shown that value and gaze
interact in driving the decision process (Shimojo et al., 2003;
Krajbich et al., 2010). However, little is known about fixation pat-
terns within multiattribute objects during choice (Krajbich, 2019);
and how they relate to the value construction process. Consumer
research has extensively studied decision strategies using process
tracing measures including eye tracking (Russo and Dosher, 1983;
Bettman et al., 1998). However, these studies decomposed options
by laying out attributes as text and numbers in a table format,
which might not relate to the mechanisms underlying everyday
choices between complex objects that are likely to be more readily
represented in VVS. Here, we provide evidence that when evaluat-
ing complex objects having well-controlled visual properties, equal
numbers of value-informative attributes, and the same overall
value, value construction per se is reflected in eye movements and
brain activations. These distinct forms of multiattribute evaluation
may inform further work to fully understand the interplay
between gaze patterns and value construction during complex de-
cision-making (Busemeyer et al., 2019).

We did not find evidence for increased functional connectiv-
ity between the vmPFC and PRC during configural object valua-
tion. This null result must be interpreted with caution, as the
study was not powered to find such an effect. There are anatomic
connections (Heide et al., 2013), and there is evidence of func-
tional connectivity (Andrews-Hanna et al., 2014) between the
vmPFC and the medial temporal lobe in humans. The PRC and
medial OFC are reciprocally connected in macaques (Kondo et
al., 2005), and disconnecting these regions disrupts value estima-
tion of complex visual stimuli (Clark et al., 2013; Eldridge et al.,
2016). The current findings of value-related activations at differ-
ent stages of the trial in the PRC and the vmPFC suggest that
interactions between these two regions might be important for
value estimation in configural conditions.

Although we attempted to match the two conditions for diffi-
culty, and further addressed this potential confound by control-
ling for trial-by-trial rating reaction times and accuracy in fMRI
analyses, one limitation of this study is that we could not account
for potential condition differences in speed of evaluation during
the fixed object presentation time and the subsequent interstimu-
lus interval. The slider response requirement also meant that
motor responses were confounded with rated values, potentially
explaining why motor regions showed value-correlated activa-
tion at the time of object presentation.

In conclusion, this neuroimaging study, directly linked to our
recent work in lesion patients, provides evidence for two ways of
building the value of complex objects, supported by at least partly
distinct neural mechanisms. Leveraging object-recognition
research to inform studies of multiattribute value-based decisions,
this work suggests that the relationship between attributes and
value might influence how an object is processed through the
VVS. Research at the interface of these two fields of research may
bring novel perspectives on the neural substrates of both percep-
tion and motivated behavior.
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