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Abstract

Developing effective preference modification paradigms is crucial to improve the

quality of life in a wide range of behaviors. The cue-approach training (CAT) paradigm

has been introduced as an effective tool to modify preferences lasting months, with-

out external reinforcements, using the mere association of images with a cue and a

speeded button response. In the current work for the first time, we used fMRI with

faces as stimuli in the CAT paradigm, focusing on face-selective brain regions. We

found a behavioral change effect of CAT with faces immediately and 1-month after

training, however face-selective regions were not indicative of behavioral change

and thus preference change is less likely to rely on face processing brain regions.

Nevertheless, we found that during training, fMRI activations in the ventral striatum

were correlated with individual preference change. We also found a correlation

between preference change and activations in the ventromedial prefrontal cortex

during the binary choice phase. Functional connectivity among striatum, prefrontal

regions, and high-level visual regions was also related to individual preference

change. Our work sheds new light on the involvement of neural mechanisms in the

process of valuation. This could lead to development of novel real-world

interventions.
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1 | INTRODUCTION

The process by which preferences are constructed and modified in

the brain is a main theme in the research of value-based decision

making (Fellows, 2011; Glimcher & Fehr, 2013; Lichtenstein &

Slovic, 2006; Rangel, Camerer, & Montague, 2008; Vlaev, Chater,

Stewart, & Brown, 2011). Studies using external reinforcements in

humans, revealed significant contribution of the striatum in asso-

ciative learning (e.g., O'Doherty et al., 2004; Pessiglione, Seymour,

Flandin, Dolan, & Frith, 2006; Rangel et al., 2008). Following

learning, value representation is putatively enhanced within the

ventromedial prefrontal cortex (vmPFC; Chib, Rangel, Shimojo, &

O'Doherty, 2009; Clithero & Rangel, 2014; Kable & Glimcher, 2009;

Rangel et al., 2008).

Alongside these findings, real-world applications for reinforcement-

based behavioral change were developed such as weight loss and

smoking abstinence programs. These interventions have been proven

effective in the short term, however, in the long term, they are often
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hard to maintain and have diminished effects over time (Cahill & Perera,

2011; Prochaska, Delucchi, & Hall, 2004).

In contrast to reinforcement-based interventions, in the recently

developed cue-approach training (CAT) paradigm, preference modifi-

cation has been induced without external reinforcements (Schonberg

et al., 2014). In this paradigm, the mere association of snack-food

stimuli with a neutral cue and a speeded button-press response

(Go stimuli), results in enhanced preference for trained stimuli. In a

binary-choice probe phase following CAT, Go stimuli are preferred

over stimuli that had not been paired with the cue and response

(NoGo stimuli) with similar initial-value. Behaviorally, CAT effect has

been established in dozens of independent samples, which have also

demonstrated the effect is general beyond food-items and induces

long-lasting impact for up to 6 months (Bakkour et al., 2016; Botvinik-

Nezer, Salomon, & Schonberg, 2019; Salomon et al., 2018; Veling

et al., 2017; Zoltak, Veling, Chen, & Holland, 2018).

While preference modification using CAT has been well-

established behaviorally, the underlying neural mechanisms have not

been fully uncovered by previous imaging studies using snack-food

stimuli (Bakkour, Lewis-Peacock, Poldrack, & Schonberg, 2017;

Botvinik-Nezer et al., 2019; Schonberg et al., 2014). In these studies,

CAT had a stronger effect on preferences for snacks with initial high-

value; thus, previous studies focused on the neural modification for

high-value stimuli. Schonberg et al. (2014) found that vmPFC fMRI

activity during probe choices of Go over NoGo stimuli was modulated

by the proportion of trials Go stimuli were chosen. Recently, CAT has

also been found to induce a change in the representation of stimuli dur-

ing passive viewing, resulting in enhanced occipital visual processing of

Go stimuli and reduced top–down parietal attention activity (Botvinik-

Nezer et al., 2019). However, neuroimaging attempts to examine the

change during training itself, had not resulted in conclusive evidence

for the mechanisms underlying CAT, neither using standard univariate

approach (Schonberg et al., 2014), nor using multivariate pattern analy-

sis (Bakkour et al., 2017).

Thus, in the current work, we aimed to reveal the underlying neu-

ral changes during training using face stimuli, motivated by several

key features of faces. First, faces are important social stimuli, known

to hold innate value features encoded in the brain, most notably in

value-processing regions such as the vmPFC, cingulate cortex, and

ventral striatum (Aharon et al., 2001; Cloutier, Heatherton, Whalen, &

Kelley, 2008; Kranz & Ishai, 2006; Senior, 2003; Smith, Clithero,

Boltuck, & Huettel, 2014). The strong preference response naturally

evoked by face stimuli, even during preference-irrelevant tasks

(Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009), lends them as

prime stimuli to examine processes of preference modification. Second,

faces are processed by specialized regions of interest (ROIs) brain net-

work (Fox, Iaria, & Barton, 2009; Kanwisher, McDermott, & Chun, 1997;

Yovel & Kanwisher, 2004). Thus, faces uniquely enabled us to focus the

fMRI analysis within this network of specialized regions, potentially

bridging early visual processing with high-level feature representation,

including preferences. Additionally, recent studies with faces have found

that CAT enhanced preference for both high- and low-value face stimuli

(Salomon et al., 2018). Combining both value-categories, which was not

done in previous imaging studies (Bakkour et al., 2017; Botvinik-Nezer

et al., 2019; Schonberg et al., 2014), could potentially improve detection

power. Finally, a better understanding of the mechanisms by which pref-

erences of faces are modified, could lead to development of novel inter-

ventions. For example, preference modification intervention for faces

could contest undesired behaviors affected by social biases such as race

and gender discrimination (Meissner & Brigham, 2001; Stamarski & Son

Hing, 2015). Similarly, in the clinical field, for conditions characterized

with biases in attention toward negative affective stimuli, such as depres-

sion (Elliott, Zahn, Deakin, & Anderson, 2011; Peckham, McHugh, &

Otto, 2010), attentional bias modification therapy has been suggested to

affect clinical symptoms by directing attention toward faces of positive

valence (Browning, Holmes, Charles, Cowen, & Harmer, 2012). Inducing

a preference modification for face stimuli could potentially be used to

alleviate these conditions. Therefore, in the current work, we utilized the

unique properties of face stimuli and CAT in order to shed new light on

the mechanisms underlying nonreinforced preference modification.

2 | METHODS

2.1 | Codes and data accessibility

Our sample size, hypotheses, and a general analyses plan were

preregistered on the open science framework (OSF), after data collec-

tion began, but prior to data analysis (project page: https://osf.io/

aqnr4/; preregistration: https://osf.io/k7wn6). Deviations from the pre-

registration are described at the end of the methods section below. All

behavioral and eye tracking data along with the codes used for their

analyses and the codes used for fMRI analyses are shared on https://

github.com/tomsalomon/CAT_MRI_faces. Magnetic resonance imaging

(MRI) data are available in brain imaging data structure (BIDS) format at

https://openneuro.org/datasets/ds001818. Uncorrected and cluster-

corrected statistical maps of all contrasts described in current work are

available at https://neurovault.org/collections/5578/.

2.2 | Participants

A total of N = 50 healthy participants were scanned, out of which

N = 42 valid participants were included in the final analyses. All partic-

ipants had normal or corrected to normal vision and hearing, and no

background of neurological disorders or medication. Participants gave

their informed consent to participate in the experiment and received

monetary compensation for their time. The study was approved by

the ethics committee of Tel Aviv University and institutional review

board at the Sheba Tel-Hashomer medical center.

We preregistered our target sample size of N = 45 (https://osf.

io/35sf3), based on 80% power analysis aimed to find an effect in a

vmPFC mask during probe, using data from a previous imaging study

with CAT (Schonberg et al., 2014). Our final sample consisted of

N = 42 valid participants (23 females), ages 19–38 (M = 25.95,

SD = 4.32). Out of the 42 participants, n = 25 agreed to return for an
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addition follow-up scanning session after a mean period of 34.6 days

(SD = 15.08; range = 14–98 days; interquartile range = 28–35 days).

Due to a scanner upgrade, data collection was terminated early,

before we could complete the predetermined sample size.

Eight participants took part in the experiment, but were excluded

from the final analysis: Three participants were excluded due to inci-

dental clinical findings; two participants did not complete the tasks

inside the scanner; one participant was excluded due to predefined

training exclusion criteria (ladder drop below 200-ms, see below)

which was used in previous CAT experiments (Salomon et al., 2018);

one participant chose the Go stimuli in 100% of probe trials and thus

could not be analyzed, and another participant had technical issues

with their scans.

2.3 | Materials

2.3.1 | Stimuli

We used a stimulus set of 60 face images, selected from the Siblings

Dataset (Vieira, Bottino, Laurentini, & De Simone, 2014), as used in a

previous behavioral CAT publication with faces (Salomon et al., 2018).

The stimulus set comprised of 30 male and 30 female front-facing

individuals, posing a neutral expression with limited facial hair and

make-up. The original images were cropped to identical size

(400 × 500 pixels) and the original green screen background was rep-

laced with a homogenous gray background. Faces were aligned by

positioning each figure's pupils in fixed coordinates symmetrically

around the center of the image ([150, 250] and [250, 250] for the left

and right figure's pupil, respectively).

2.3.2 | Cue

In the training task, we used a neutral auditory cue of a 180-ms sinu-

soidal wave tone as a Go signal to which participants were required to

respond with a rapid button press, similarly to the cue used in previ-

ous cue-approach studies (Bakkour et al., 2016, 2017; Salomon et al.,

2018; Schonberg et al., 2014).

2.3.3 | Stimuli presentation

Stimuli were presented using MATLAB R2014b (Mathworks, Inc.

Natick, MA), Psychtoolbox-3 (Kleiner et al., 2007) package, using a

21.5'' iMac for the tasks outside of the scanner (initial preference

evaluation and demos before the scan, as well as postscan memory

task). During scanning, a MacBook Pro was used to present images

inside the MRI, which were projected to a NordicNeuroLab 32'' LCD

display (1,920 x 1,080 pixels resolution, 120 Hz image refresh rate)

that participants viewed through a mirror. The sound during the train-

ing part was played in a controlled volume, using Sensimetrics S14 in-

ear MRI compatible headphones. Participants' gaze was constantly

monitored online and recorded at 500 Hz using SR-Research EyeLink

1000 Plus eye-tracker.

2.4 | Procedure

Overall procedure (Figure 1) followed a similar course to that of

previous CAT studies with faces (Salomon et al., 2018)—begining

with an initial preference evaluation task, followed by CAT and a

binary choice probe phase. Additionally, we introduced immediately

before and after CAT, a passive viewing task (following similar pro-

cedure to the one used by Botvinik-Nezer et al., 2019), as well as

an additional dynamic face localizer task, adapted from previous

work (Bernstein et al., 2018), which was the last task inside the

MRI, after the probe task. A detailed description of each task

appears below.

2.4.1 | Baseline evaluation of subjective
preference

Outside the MRI scanner, participants' baseline subjective preference

for the 60 individual face stimuli were evaluated using a forced-choice

binary ranking procedure. Participants were presented with

300 unique binary choices during which they were asked to select

their preferred stimulus out of two randomly paired face stimuli,

within an allocated 2,500-ms time window (see Figure 1a). Each stim-

ulus was presented in exactly 10 choice trials to maintain a similar

exposure to all stimuli.

Similar to our previous work with face stimuli (Salomon et al.,

2018), binary choices acquired in the baseline subjective preference

phase, were transformed into ranking scores using the Colley Matrix

algorithm (Colley, 2002). In the algorithm, based on the assumption of

choice transitivity, outcomes from the binary choices were used to

calculate a ranking score indicating the subjective value for each of

the 60 face stimuli.

Colley Matrix ranking scores typically range in scores from

0 (least liked) to 1 (most liked), with a fixed mean of 0.5. An intran-

sitive choice pattern is characterized by densely distributed scores

around the center of 0.5. We calculated transitivity scores for each

participant using the standard deviation (SD) of the Colley-ranking

scores. From these transitivity scores, we defined an exclusion cri-

terion, similarly to previous studies (Salomon et al., 2018); partici-

pants with transitivity scores 3 SD below the group mean would be

excluded from analysis due to intransitivity of choices. However, in

the current study, no participant had been excluded following this

criterion.

2.4.2 | Passive viewing: Baseline

Following the initial preference evaluation task, participant entered

the MRI scanner. Their first task inside the scanner was a passive
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viewing task, in which the neural response to 40 face stimuli was mea-

sured (see Figure 1b). The stimulus set consisted of 20 high-value

(ranked 3–22, above the median rank) and 20 low-value stimuli

(ranked 39–58, below the median rank). Each stimulus was pres-

ented individually on the screen for 2,000 ms, followed by a jittered

interstimulus interval (ISI) presentation of a fixation cross (mean

duration 2,000 ms, range 1,000–6,000 ms, 1,000 ms increments),

resulting in 170-s long scan. To make sure participants were

engaged with the viewing task, participants performed a sham

silent counting task of either male or female faces (the gender to be

counted was counter-balances across participants, based on the

participant code). Participants were asked to report at the end of

the scan, how many male or female faces they had counted. One

scan was performed at baseline before CAT, and another scan was

performed after CAT.

2.4.3 | Cue-approach training

The CAT task's protocol followed that of previous CAT with faces

(Salomon et al., 2018). Each stimulus in the training set was presented

individually on the screen for 1,000 ms, once during each training run

(see Figure 1c). Stimuli were randomly ordered and followed by a

jittered fixation cross with an average duration of 2,000 ms (range of

1,000–6,000 ms, 1,000 ms intervals). The task comprised of eight

scans (lasting 252 s each). In each scan, two training runs were com-

pleted, resulting in a total of 16 presentations for each stimulus

throughout the entire training task. The stimulus set included the

same 40 stimuli presented in the previous passive viewing task. Out

of the 40 stimuli, 30% (12 stimuli: six high-value, Mrank = 12.5, and six

low-value stimuli Mrank = 48.5; see Figure S1) were associated with

the Go cue. Participants were instructed to respond to the Go cue by

++ +

Stimulus Presentation
RT (up to 2 500 ms)

Choice Confirmation
500 ms

Jittered Fixation
3 000 ms - RT

+

Stimulus Presentation

2 000 ms
Jittered Fixation

~2 000 ms

Stimulus Presentation
2 000 ms

+ +

+

Stimulus Presentation
1 000 ms

Jittered Fixation

~2 000 ms

Stimulus Presentation + 

~750 ms Delayed Cue

+ +

+

Stimulus Presentation

RT (up to 1 500 ms)

Choice Confirmation

500 ms

Jittered Fixation

~3 000 ms

+ +

+

Faces Clips Block

16 s
Objects Clips Block

16 s

Fixation Block

16 s

+ +++++++++++++++++++++++++++++++++++++++++

(a) Initial Preferences (Outside scanner) 

(b) Passive Viewing (1 scan before training) 

(c) Training (16 runs, 8 scans) 

(e) Probe (2 runs, 4 scans) 

(f) Face Localizer (2 scans) 

+

Stimulus Presentation

2 000 ms
Jittered Fixation

~2 000 ms

Stimulus Presentation

2 000 ms

+ +

(d) Passive Viewing (1 scan after training) 

First Session First Session & Follow-up Session

F IGURE 1 Experimental procedure: General outline of the experimental procedure. (a) participants' subjective preference for 60 face images
was first evaluated outside the scanner using a binary forced-choice task. A subset of 40 face stimuli were selected for the following tasks inside
the MRI (see Figure S1). (b) In a passive viewing task, participants viewed all 40 stimuli while performing a silent counting sham task. (c) During
the 40 min cue-approach training (CAT) task, stimuli were presented individually. Twelve stimuli (30%) were designated to be Go stimuli,
consistently associated with a delayed neutral auditory cue to which participants were required to respond with a rapid button press response;
The remaining 70% of stimuli (NoGo stimuli) appeared without a cue and response. (d) Participants' neural response to the stimuli was tested
once again following CAT. (e) During the probe phase, participants were asked to indicate their preferred stimulus out of pairs with similar initial
value (either both high-value or both-low value) in which one stimulus was Go and the other NoGo stimulus. (f) Face selective regions were
functionally identified using a faces and objects localizer task (Bernstein, Erez, Blank, & Yovel, 2018). Participants were presented with 16-second
long blocks of faces, objects, and fixation cross. Each block comprised of 16 short clips, while performing a sham one-back task. In a 30-day
follow-up session, participants performed again tasks d–f. Face images (a–e) are included with permission from the copyright holder (Vieira et al.,

2014). Illustration of the face localizer task (f) was done using public domain images, similar to the ones actually used in the experiment [Color
figure can be viewed at wileyonlinelibrary.com]
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pressing a response box button using their right-hand index finger, as

fast as possible, before stimulus offset. Participants were not

informed in advance that the association of stimuli with the cue will

be consistent or which stimuli would be Go stimuli. The cue appeared

following a delay of 750 ms from stimulus onset, at the beginning of

the task. To maintain a balanced difficulty level throughout the train-

ing phase, the cue delay was modified according to participants' per-

formance, as conducted in previous cue-approach studies (Bakkour et al.,

2016, 2017; Salomon et al., 2018; Schonberg et al., 2014). Each success-

ful response resulted in a 16.66 ms increase of the Go signal delay (GSD),

thus making the task more challenging; whereas failing to respond on

time resulted in 50 ms decrease (1:3 ratio) of the GSD. GSD was updated

independently for high-value (overall, MGSD = 738.37 ms, SD = 63.75 ms;

last scan MGSD = 756.19 ms, SD = 76.69 ms) and low-value trials

(MGSD = 730.95 ms, SD = 65.94 ms; last scan MGSD = 738.55 ms,

SD = 79.38 ms). Importantly, participants did not receive any feedback

about their performance throughout the task, neither after individual tri-

als, nor at the end of the scan.

2.4.4 | Anatomical scans

After the last training scan, participants were given about 9 min of

rest before continuing to the next task, during which FLAIR and T1w

anatomical scans were performed.

2.4.5 | Passive viewing: Post training

After the anatomical scans, participants underwent an additional pas-

sive viewing task, identical to the one performed before training

(Figure 1d). In the second scan, the same stimuli were presented in a

new random order. Participants were once again asked to silently

count how many male or female faces appeared and report the num-

ber at the end of the scan. The target gender to be counted was

always the opposite of that used in the baseline passive viewing scan.

2.4.6 | Probe

In the probe task, preference modification following CAT was evalu-

ated in a forced-choice task. On each probe trial, participants had to

choose between two stimuli with similar initial value—both either

high-value or low-value. In each pair, one of the stimuli was a Go stim-

ulus, previously associated with a cue and a button press during train-

ing. Six Go stimuli were compared against six NoGo stimuli of equal

mean rank, for a total of 36 (6 x 6) unique comparisons per value cate-

gory (see Figure S1). In four additional “sanity check” trials, two high-

value NoGo stimuli were pitted against two low-value NoGo stimuli.

Each trial lasted 2,000 ms—participants had a 1,500 ms time window

to make their choice, which was followed by a 500 ms choice confir-

mation (green frame around the chosen option) and a fixation cross

until the end of the trial. Missed trials, in which the participant failed

to decide in the allocated time frame, were followed by a 500 ms

warning massage prompting to perform faster choices. Trials were

separated with a fixation cross presented for a jittered duration

(M = 3,000 ms, range = 1,000–11,000 ms, 1,000 ms increments; see

Figure 1e).

The entire task consisted of 76 unique trials (36 high-value Go

vs. NoGo, 36 low-value Go vs. NoGo, and four high-value vs. low-

value sanity trials). All choices were repeated twice, once in each of

the two probe runs, presented in a random order. In order to ensure

each scan will not exceed 6 min, each probe run was equally spilt into

two scans (in which half of the trials of each category were pres-

ented), for a total of four probe scans, lasting 200 s each.

2.4.7 | Dynamic face localizer

To identify face selective brain regions at the individual level, we

included a dynamic face localizer task adapted from previous work

(Bernstein et al., 2018). In the task, participants viewed in each 336 s

long scan, 16 s blocks of fixation point (five blocks per scan), video

clips of faces (eight blocks per scan), and video clips of objects (eight

blocks per scan). Each video-clips block consisted of a series of

16 short 1,000 ms video clips (Figure 1f). To maintain task engage-

ment, participants performed a one-back task, in which they were

required to press a button when an identical video clip was presented

twice in a row. Participants performed two scans of the face localizer

task, each with a different stimuli and blocks order.

2.4.8 | Memory

At the end of the experiment, participants performed a recognition

task outside the scanner. In this task, a single face stimulus appeared

on screen during each trial. The task included 56 trials: 28 face stimuli

that appeared during the probe phase, and another 28 new face stim-

uli that the participants had never encountered before. For each stim-

ulus, participants were first asked to report whether the stimulus had

been presented during the experiment, followed by whether the stim-

ulus had been associated with a cue during the training phase.

Reporting was done on a 5-points confidence scale (1-certain it was,

2-think it was, 3-not sure, 4-think it was not, 5-certain it was not),

without time restriction, though participants were encouraged to

respond as quickly as possible.

2.4.9 | Follow-up

All participants had been notified when they signed up for the experi-

ment that there will be an additional follow-up session and were

encouraged to return after a predetermined period of 1 month. In the

follow-up session, participants completed the same tasks that

followed CAT in the first session: passive viewing, probe, and face

localizer inside the scanner and a recognition task outside the scanner.
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The tasks were identical and included the same stimuli used in each

participant's first session, presented in a random order.

2.5 | Imaging data acquisition

Data were acquired using a 3T Siemens Prisma scanner, with a

64-channel head coil. For structural data, T1w high resolution (1 mm3)

whole brain images were acquired with a magnetization prepared

rapid gradient echo pulse sequence with repetition time (TR) of

2.53 s, echo time (TE) of 2.88 ms, flip angle (FA) = 7�, field-of-view

(FOV) = 224 × 224 × 208 mm, resolution = 1 × 1 × 1. Functional

imaging data were acquired with a T2* weighted multiband echo pla-

nar imaging protocol, with a repetition time TR = 2,000 ms, TE = 30 ms,

FA = 900, and multiband acceleration factor of two and parallel imag-

ing factor (iPAT) = 2, scanned in an interleaved fashion. Image resolu-

tion was 2 × 2 × 2.5 mm voxels (0.5 mm gap between axial slices),

FOV = 194 × 230 × 195 mm (97 × 115 × 78 acquisition matrix). All

images were acquired at a 30� angle off the anterior–posterior com-

missures (AC–PC) line, to reduce signal dropout in the ventral frontal

cortex (Deichmann, Gottfried, Hutton, & Turner, 2003).

2.6 | Behavioral data analysis

In order to evaluate the preference-change effect following CAT, we

analyzed the proportion of probe trials in which participants chose the

Go over the NoGo stimulus. In line with previous findings with CAT

(Salomon et al., 2018), we expected participants to choose both high-

value as well as low-value Go stimuli over similar value NoGo stimuli

above chance level (50% proportion; log-odds = 0; odds-ratio = 1).

Thus, CAT preference modification effect was tested using a one-

sided repeated measures logistic regression analysis.

We did not expect to find a significantly stronger effect for high-

value probe pairs (Salomon et al., 2018); therefore, differences

between the two pair-types were tested using a two-sided logistic

regression analysis. Each result is reported with the respective odds-

ratio (OR) and its 95% confidence interval (CI), as the corresponding

effect size estimates. Analyses and visualizations were conducted

using lme4 (Bates, Mächler, Bolker, & Walker, 2015) and ggplot2

(Wickham, 2016) R packages, and are available online along with the

experimental data at https://osf.io/aqnr4/.

2.7 | Eye-tracking data analysis

In three additional analyses, we inspected the proportion of time par-

ticipants fixated on the Go versus NoGo stimuli during passive view-

ing, training, and probe task. In the passive viewing and the training

tasks, gaze durations were averaged for each participant across the

Go and NoGo trials, and contrasted within participant. In the probe

task, we examined in the forced binary choice paradigm the propor-

tion of time participants viewed the Go stimuli versus the competing

NoGo stimuli. Relative gaze durations for the competing Go and

NoGo stimuli were contrasted within individual trials. Previous work

found that during the probe phase, participants fixated on unchosen

Go stimuli for a longer duration, compared to unchosen NoGo stimuli

(Bakkour et al., 2016; Schonberg et al., 2014).

For some participants, eye-tracking data were not collected or

analyzed, mainly due to suboptimal gaze-recording conditions

(e.g., participants wearing light-reflecting MRI compatible glasses).

Data preprocessing included identification of gaze within the screen

regions where stimuli were presented, as well as removal of corrupted

data due to poor calibration and blinks. We defined rectangular ROI

with a buffer zone around the screen x and y coordinates of the stim-

uli presented as well as central fixation cross. The screen ROI were

increased by additional 20% of the stimulus width and height around

the x and y axes, respectively (10% additional pixels on each direc-

tion). Gaze recorded outside the ROI was treated as invalid data. To

exclude data corrupted by blinks, 150 ms time-windows before each

blink onset and after each blink offset were also scrubbed before the

analysis. The analysis included only the time from stimulus onset to

stimulus offset, removing ISI.

We included in the analyses only scans in which the participants

fixated on average on the ROI (fixation cross and/or stimuli) for at

least 50% of the total time of all trials of the scan. Participants with

50% or more unrecorded or excluded scans (i.e., 1, 4, and 2 scans of

the passive viewing, training, and probe task, respectively) were

excluded from the task analysis. Results remain consistent when these

participants are included in the analyses. See Table 1 for a summary

of the sample sizes and excluded data in all tasks.

2.8 | Imaging data analysis

2.8.1 | MRI preprocessing

Raw DICOM format imaging data were converted to NIfTI with

dcm2nii tool. The NIfTI files were organized according to the BIDS

format v1.0.1 (Gorgolewski et al., 2016). Preprocessing of the func-

tional imaging data was performed using fMRIprep version 1.0.0-rc2

(Esteban et al., 2019), a Nipype-based tool. Each T1 weighted volume

was corrected for bias field using N4BiasFieldCorrection v2.1.0 and

TABLE 1 Eye-tracking analyses sample sizes

Session Task
Valid participants
(excludeda)

Valid scans
(excludedb)

First session Training (8 scans) n = 32 (1) 234 (22)

Passive viewing (2 scans) n = 26 (6) 52 (0)

Probe (4 scans) n = 29 (2) 109 (7)

Follow-up Passive viewing (1 scan) n = 14 (1) 14 (0)

Probe (4 scans) n = 15 (1) 56 (4)

aNot counting participants for which eye-tracking data were not recorded.
bScans with less than 50% valid data were not included in the analysis.
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skull stripped using antsBrainExtraction.sh v2.1.0 (using OASIS tem-

plate). Cortical surface was estimated using FreeSurfer v6.0.0 (Dale,

Fischl, & Sereno, 1999). Skull-stripped T1 weighted volumes were cor-

egistered to skull stripped ICBM 152 Nonlinear template version

2009c using nonlinear transformation implemented in ANTs v2.1.0

(Avants, Epstein, Grossman, & Gee, 2008). Functional data were

motion corrected using FSL MCFLIRT v5.0.9 (Smith et al., 2004). This

was followed by co-registration to the corresponding T1 weighted

volume using boundary-based registration with nine degrees of free-

dom, implemented in FreeSurfer v6.0.0. Motion correcting transfor-

mations, T1 weighted transformation and MNI template warp were

applied in a single step using antsApplyTransformations v2.1.0 with

Lanczos interpolation. Three tissue classes were extracted from the

T1 weighted images using FSL FAST v5.0.9. Voxels from cerebrospinal

fluid and white matter were used to create a mask which was used to

extract physiological noise regressors using aCompCor. The mask was

eroded and limited to subcortical regions to limit overlap with gray

matter, and six principal components were estimated. Framewise dis-

placements were calculated for each functional run using a Nipype

implementation. For more details of the pipeline using fMRIprep see

http://fmriprep.readthedocs.io/en/1.0.0-rc2/workflows.html.

For each scan, we created a motion confound file containing nine

regressors: six motion parameters (translational and rotation, each in

three directions), a regressor for the SD of the root mean squared inten-

sity difference from one volume to the next (DVARS), absolute DVARS

values, and voxelwise SD of DVARS values. Volumes with excessive head

movement (predetermined as framewise-displacement value larger than

0.9 mm) were scrubbed by adding an additional regressor for each vol-

ume to be removed. These nine regressors (or more, if included volume

scrubbing procedure) were added to each first-level analysis.

2.8.2 | Face region of interest analysis

To examine the involvement of specialized face-processing brain

regions, we used an ROI analysis approach to examine three

preregistered regions comprising the central part of the face-selective

network (Fox et al., 2009; Kanwisher et al., 1997; Yovel & Kanwisher,

2004): the fusiform face area (FFA), occipital face area (OFA), and the

posterior division of the superior temporal sulcus (pSTS), separately

for each hemisphere. These face-selective regions were identified in

MNI space using an independent localizer task contrasting response

to video-clips of dynamic faces versus objects (see Section 2.4). We

were able to identify face-selective response in the right FFA in

95.24% of participants (n = 40; Msize = 126.33 voxels), left FFA in

95.24% (n = 40; Msize = 100.00 voxels), right OFA in 59.52% (n = 25;

Msize = 62.64 voxels), left OFA in 61.90% (n = 26; Msize = 53.19

voxels), right pSTS in 95.24% (n = 40; Msize = 146.48 voxels), and left

pSTS in 78.57% (n = 33; Msize = 161.88 voxels) of all 42 valid partici-

pants. For each region, we created a binary mask which was used to

extract its mean percent signal change (Mumford, 2007). As in the

general GLM model, we examined both the group mean as well as the

correlation with CAT behavioral effect. Each of the six ROI analyses

included data from different subset of participants out of the total

N = 42, according to the number of participants in which we were

able to localize the ROIs. To account for multiple comparisons, we

report Bonferroni-corrected results exceeding p = .0083 as significant

(α = .05, corrected for six multiple comparisons).

2.8.3 | Face network support vector machine
analysis

Changes at the face processing networkwere also examinedwith an addi-

tional exploratory support vector machine (SVM) analysis, using the same

functionally defined ROIs. The percent signal change of the voxels within

each regionwere averaged, and then used as features in an SVMclassifica-

tion model (each region's mean as a single feature). Participants were

median-split according to their CAT behavioral effect (proportion Go stim-

uli were chosen during probe; below-median group: M = 47.88%,

SD = 6.27%, range = 32.64%—56.34%; above-median group:M = 65.48%,

SD = 8.12%, range = 56.64%—83.22%), ROI data were z-scored and used

as features in the SVMmodel. Sincewewere not able to functionally iden-

tify the OFA for approximately 40% of participants, we decided to use

only FFA and pSTS data as features in the SVMmodel. For the few partici-

pants where either FFA or pSTS were not identified using the functional

localizer, the missing feature data were replaced with the group mean

value in the SVM model. Using a leave-one-participant-out cross valida-

tion (CV) procedure, the model was trained to classify between above-

median and below-median participants using data from all participants but

one, and the model's accuracy was tested using the last participant, not

included in the training of the model. The CV performance of the model

was evaluated using a permutation test. The model's accuracy was com-

pared to that of 5,000 randomly permutated models (where participant

labelswere randomly shuffled) to produce a p value.

2.8.4 | fMRI univariate analysis

FSL's FEAT (FMRIB expert analysis tool; Smith et al., 2004) was used

to design a general linear model (GLM) analysis of the fMRI data. In a

first level analysis, BOLD response was modeled by convolving each

task's regressors (except for motion confound regressors, described

above) with a canonical hemodynamic response function (HRF). For

each convolved regressor, we included the temporal derivative in the

first-level GLM model. Following the first-level analysis, in a second-

level fixed effects model, the scans of each individual participant were

averaged or contrasted, differently in each task. Finally, in a mixed

effects (FLAME 1) group analysis, we analyzed the mean group effect,

as well as a correlation analysis between each lower-level contrast

and the corresponding behavioral effect measured during the probe

phase. Contrasts of high-value stimuli were correlated with the pro-

portion of trials each participant chose the high-value Go stimuli dur-

ing probe; low-value contrasts were correlated with the proportion of

trials each participant chose the low-value Go stimuli during probe;

contrast involving both high- and low-value stimuli were correlated
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with the mean proportion of trials participants chose any Go stimulus

(high or low). A general analysis plan with predefined contrasts and ROI

was recorded at OSF (https://osf.io/89632/), deviations from this anal-

ysis plan are further detailed below at the end of the methods section.

Collecting a relatively large sample of participants with greater

power to model behavior variability, enabled us to test the group-level

correlation analysis of the CAT behavioral change effect with func-

tional neural response. Thus, we aimed to find activity correlated with

stronger CAT effects between participants, that is, which regions

showed enhanced activity for participants who demonstrated a stron-

ger preference for Go stimuli. However, considering the correlation

analysis requires a large sample size to be properly interpreted

(Yarkoni, 2009), we avoided using correlation analysis in the relatively

small subsample we had in the follow-up session (n = 25; min. r = .583

detectable with 80% power, α = .01).

Passive viewing

The first-level GLM of the passive viewing task included a total of

13 regressors (excluding the motion confound regressors), similar to

the ones used in recent work (Botvinik-Nezer et al., 2019): four

regressors for different stimuli of interest (high-value Go, high-value

NoGo, low-value Go, and low-value NoGo stimuli), the same four

regressors with the same onsets and duration, but with a parametric

modulation of the mean-centered proportion of trials the stimulus

was chosen during the probe phase, four regressors for stimuli of no

interest (high-value “training fillers”, high-value “probe sanity”, low-

value “training fillers”, and low-value “probe sanity”), and a final addi-

tional regressor with a parametric modulation by the mean-centered

initial subjective value (Colley score) of each stimulus, to account for

initial-value confound. These 13 regressors were convolved with the

canonical HRF and included in the GLM along with their temporal

derivative and the motion regressors.

In a second-level analysis, we averaged the scans as well as con-

trasted the post-training scans with the baseline pretraining scans in

order to model “after CAT > before CAT” differences in BOLD

response. The follow-up scans were similarly analyzed, contrasting the

follow-up scan with the first pre-CAT baseline scan.

Training

The first-level GLM of the training task included a total of 18 regressors

(excluding motion), similarly to the training analysis described by

Schonberg et al. (2014). Go trials were modeled by 10 regressors: four

regressors for high-value Go trials (unmodulated, modulated by proportion

of probe choices, modulated by initial value and modulated by GSD; all

modulations were mean-centered), similar four regressors were used for

low-value Go trials, one additional regressor included onsets and duration

of all Go trials modulated by the mean centered reaction time and one

regressor modeled missed Go trials (Go trials in which participants failed

to respond at all). Eight regressors modeled NoGo trials: three regressors

for high-value NoGo trials (unmodulated; modulated by proportion of

probe choices; modulated by initial value), similar three regressors were

used for the low-value NoGo trials, an additional regressors modeled all

NoGo trials of sanity and “fillers” stimuli and the last regressor modeled

rare NoGo trials, in which an erroneous button press response was made.

In the second-level analysis, we contrasted each scan on its own. Focusing

on the first and last scan, the two ends of the training session were con-

trasted in a “last scan > first scan” contrast as well as in a linear trend

weighting the eight scans from earliest to latest, as described in the gen-

eral analysis preregistration (https://osf.io/89632/).

Probe

In the probe task, 16 regressors were used in the GLM model, as done

in previous work (Botvinik-Nezer et al., 2019; Schonberg et al., 2014).

In each regressor, trial duration was set to 956 ms, which was the

average trial-duration across all trials of all participants. Four trial cate-

gories were generated based on the initial value of the two stimuli in

the probe pair, and the outcome chosen by the participant (high-value

Go, high-value NoGo, low-value Go, and low-value NoGo was cho-

sen). Each of these four trial categories was modeled by three

regressors—unmodulated, modulated by the proportion of times the

stimulus was selected throughout the entire task; modulated by the

difference in initial value between the two stimuli (all modulations

were mean-centered); thus, resulting in 12 regressors. Two regressors

modeled all high-value and all low-value trials (one regressor for each

category) modulated by the reaction time, one regressor modeled san-

ity trials and one regressor modeled missed trials in which participants

failed to respond within the allocated 1,500 ms time frame. Second-

level analysis of the probe averaged the four scans of the probe task.

Since regressors were based on participants' responses, in some

cases this resulted in a rank deficient design matrix due to an empty

regressor of interest (e.g., one participant did not choose the NoGo

stimuli in any of the low-value probe trial and was therefore left with

an empty low-value NoGo regressor) or a zeroed-out modulation by

choice (in case only one choice was made, mean-centered modulation

resulted in a modulation column of all-zeros). Scans with empty

regressors were excluded from the second-level analysis. Since sev-

eral modulated NoGo regressors were zeroed out, we decided not to

exclude scans in these cases, but rather not focus on these regressors

in any further analysis, as was done in a previous work with similar

challenges (Botvinik-Nezer et al., 2019; Schonberg et al., 2014). As a

result, one participant was excluded from the analysis, and three addi-

tional participants had one of their four probe scans excluded. In the

second-level analysis, all four probe scans (or three remaining scans in

the case of three participants) were averaged.

2.8.5 | Contrasts of interest

We defined several contrasts of interest as our main analyses. In the

Section 3 below, we report all statistically significant findings for these

contrasts. If one or more of these contrasts are not reported, this is an

indication that the contrasts had been examined but yielded no statis-

tically significant results. Our contrasts of interest were based on

insights from previous behavioral data (Salomon et al., 2018). Previous

imaging studies of CAT with snack-food stimuli focused on high-value

stimuli contrasts, as significant behavioral effects were observed
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mainly for these high-value stimuli (Bakkour et al., 2017; Botvinik-

Nezer et al., 2019; Schonberg et al., 2014). In the preregistration of

the current work, based on previous research with CAT and faces

(Salomon et al., 2018), we expected that CAT will induce a significant

effect both for high-value and low-value stimuli. Therefore, in the cur-

rent work we focused on three first-level contrasts of interest pooling

together both value categories stimuli (termed “All” contrasts): (a) All

Go stimuli contrast—representing the mean response to both high-

and low-value Go stimuli; (b) All Go minus NoGo stimuli contrast—

representing regions with stronger mean response to Go than NoGo

stimuli (as in the previous contrast, pooling across both high- and low-

value stimuli); (c) All Go: modulated by choice contrast—representing

regions which activity correlated with the proportion of trials a stimu-

lus was chosen by the individual participant scanned (within scan cor-

relation of BOLD with behavioral effect).

The first contrast, All Go stimuli, was examined using a fixed-

effects model (second level in FSL) across different time points in the

passive viewing and training task. In the passive viewing task, post-

training scans were contrasted with the pretraining baseline scans,

and 1-month follow-up scans were also contrasted with baseline. In

the training task, the last scan of training was contrasted with the first

scan, and early training scans were contrasted with late training scans

in a linear trend contrast. In a group-level random effect analysis (third

level in FSL), the All Go stimuli contrast was tested for the mean group-

effect. It was also tested in a correlation analysis with the CAT behav-

ioral effect in all three tasks—that is, examining in which brain regions

participants with stronger BOLD response to Go stimuli had also dem-

onstrated greater CAT effect (stronger preference for Go stimuli).

The second contrast, All Go minus NoGo stimuli, was similarly tested

in the passive viewing and training tasks in a fixed-effects analyses com-

paring different time points (pretraining to post-training and early training

to late training in the passive viewing and training task, respectively), as

well as in a group-level correlation with the behavioral change analysis in

all three tasks. In addition, the All Go minus NoGo contrast was also

tested without second-level (fixed-effects) contrast in the probe and the

post-training passive viewing task, to examine which brain regions

responded stronger to Go versus NoGo stimuli within the task.

The third contrast of interest, All Go: modulated by choice, similarly

to the second contrast of interest, was also tested with fixed-effects

contrasts comparing between time-points in the passive viewing (pre-

training to post-training) and training tasks (early training to late train-

ing), as well as without between-scans contrast in the probe and the

post-training passive viewing task. Unlike the previous contrasts of

interest, it was not examined in group-level correlation analysis with

CAT effect, due to the ambiguity of this contrast's interpretation

(i.e., a correlation effect within scan showing correlation pattern with

behavioral effect across participants).

2.8.6 | Anatomically defined regions of interest

Our analyses focused on the role of four preregistered anatomically

defined ROIs: (a) the vmPFC, which has been implicated in valuation

(Bartra, McGuire, & Kable, 2013) and importantly also in previous

imaging studies with CAT (Bakkour et al., 2017; Schonberg et al.,

2014); (b) the superior parietal lobule (SPL), which is associated with

attentional mechanisms (Alho, Salmi, Koistinen, Salonen, & Rinne,

2015; Shomstein & Yantis, 2006) and has been recently found to be

related to CAT (Botvinik-Nezer et al., 2019); (c) the striatum, impli-

cated in reward and reinforcement-based learning (O'Doherty, 2004;

O'Doherty et al., 2004); and (d) the hippocampus, as we hypothesized

that memory processes will be an important factor in the maintenance

of CAT (Botvinik-Nezer et al., 2019; Wimmer & Shohamy, 2012).

These four ROIs were preregistered prior to data analysis

(https://osf.io/uhk4u; see deviations from preregistration detailed in

following section). Following the whole-brain analysis, we performed

an additional small-volume corrected (SVC) analysis for these four

ROIs, as was done in previous work with CAT (Bakkour et al., 2017;

Botvinik-Nezer et al., 2019; Schonberg et al., 2014). In the SVC analy-

sis, anatomical masks for each ROI were defined based on the

Harvard-Oxford structural atlas and used to identify clusters within

the ROI. We report in the text all contrasts of interest where signifi-

cant clusters were found with SVC. In contrasts where a whole brain

analysis revealed significant results in the ROI, we do not report an

additional result using SVC (as these are trivial). All SVC results were

corrected for four multiple comparisons using Bonferroni correction.

We report clusters exceeding Bonferroni corrected α = .0125 as sta-

tistically significant, along with corrected p values (original p multiplied

by four). Additional relevant regions (Bartra et al., 2013; Smith et al.,

2014) were not selected as ROIs. This was done to maintain detection

power, as using additional ROIs would require more stringent statisti-

cal threshold correction for each region. Nonetheless, we examine

and report all significant results in our whole-brain analyses.

2.9 | Functional connectivity: gPPI analysis

To examine the functional dynamics of CAT, we performed an addi-

tional generalized psychophysiological interaction (gPPI) analysis

(McLaren, Ries, Xu, & Johnson, 2012) for the training task. The analy-

sis examined task-related functional connectivity with key ROI seed

regions during the training task—specifically, connectivity with the

seeds' response to Go stimuli during training in contrast to the

response to NoGo stimuli. Seeds were selected based on significant

clusters found in the whole-brain analysis. A 5-mm sphere was

defined around the peak activation voxel of each contrast, and was

then masked by the original activation cluster, to only include voxels

appearing in the original activation cluster. For each seed, an indepen-

dent model was created. The seed's neural response to Go and NoGo

stimuli during the training task was estimated by deconvolving the

mean BOLD signal of the voxels in the seed ROI (Gitelman, Penny,

Ashburner, & Friston, 2003).

The first-level gPPI model included 21 regressors: one regressor

indicating the estimated seed's response to Go stimuli; one regressor

indicating the estimated seed's response to NoGo stimuli, one regres-

sor with the mean time series of the seed voxels and all 18 regressors
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used in the GLM analysis of the training task, detailed above. Func-

tional connectivity was evaluated by contrasting Go PPI regressor

with NoGo PPI regressor. Second-level and group analyses were iden-

tical to those described in the GLM analysis.

2.10 | Deviations from preregistration

Prior to the completion of data collection and before any statistical ana-

lyses were performed, we preregistered our experimental procedure, sam-

ple size, expected results, and a general analysis plan for the imaging data.

Althoughwe aimed this preregistration to depict as clearly and extensively

as possible our analysis plan, some important details were not well-speci-

fied. In this section, we highlight important ambiguities and differences

between our preregistration and the final methods used in thiswork.

The first deviation from preregistration regards the use of

prehypothesized ROI. In the preregistration, we specified the anatomi-

cally defined ROIs (vmPFC, striatum, SPL, and hippocampus) together

with the functionally defined ROIs (FFA, OFA, and pSTS). However, we

unintentionally neglected to specify how these ROI will be used in anal-

ysis. Anatomical ROIs were only intended to be used in SVC analysis, as

done in previous work (Bakkour et al., 2017; Botvinik-Nezer et al.,

2019; Schonberg et al., 2014). Functionally defined ROI data were

transformed to percent signal change and averaged to be used in the

reported GLM ROI analysis and an exploratory (unregistered) SVM

model. To limit our false discovery rate (Gildersleeve & Loken, 2013),

we did not perform any additional exploratory analyses using face ROIs.

The data are openly shared to be analyzed by others who might be

interested in using different approaches. Another ROI deviation was

done with the definition of the parietal ROI—while in the preregistra-

tion we intended to use both SPL and intraparietal sulcus (IPS), in the

final analysis we did not use the IPS, as we realized this region is not

well-defined in the Harvard-Oxford cortical structural atlas.

Second, in our analysis plan (https://osf.io/8yhzr/), we mentioned

that group analysis will be done with FSL Randomize as our first

option, based on nonparametric permutation testing, and FLAME-1 as

a second choice in case Randomize will not yield results (Eklund,

Nichols, & Knutsson, 2016). Eventually, we decided to use FLAME-1

which provides valuable modeling of intersubject variability and may

be more suitable for our design and sample size. The detailing of fMRI

models also lacks in the preregistration. While the general outline of

analysis is described for each task, we failed to clearly define the

regressors and contrasts in a satisfactory manner. These contrasts of

interest described in the current paper were conceptualized prior to

data analysis based on previous imaging work with CAT (Bakkour

et al., 2017; Botvinik-Nezer et al., 2019; Schonberg et al., 2014), but

some of them had not been well-documented in the preregistration.

No other unreported analysis models were used.

Finally, in our preregistration, we mentioned we will perform an

analysis of the data from the memory behavioral task as well as a mul-

tivariate pattern analysis (MVPA) of the imaging data. However, we

eventually decided that both memory and MVPA are beyond the

scope of the current article and did not perform these analyses.

3 | RESULTS

3.1 | Behavioral

In the first session of the probe task, participants showed enhanced

preference for the high-value Go stimuli over high-value NoGo stimuli

(prop. = 57.86%, OR = 1.40, 95% CI = [1.18, 1.66], p = 4.4E−5, one-

sided logistic regression; see Figure 2), as well as for the low-value Go

stimuli over low-value NoGo stimuli (prop. = 55.50%, OR = 1.26, 95%

CI = [1.07, 1.50], p = .003, one-sided logistic regression). The effect

was consistent when pooling together trials from both categories (All

Go, OR = 1.33, 95% CI = [1.15, 1.54], p = 8.3E−5, one-sided logistic

regression), with a marginal trend of stronger effect for high-value

probe choices (OR = 1.11, 95% CI = [0.99, 1.23], p = .06, two-sided

logistic regression). In the 1-month follow-up session, enhanced pref-

erence for high-value Go stimuli was maintained for the high-value

pairs (prop. = 54.78%, OR = 1.23, 95% CI = [0.97, 1.57], p = .046, one-

sided logistic regression) with a trend for low-value pairs (prop.

= 53.13%, OR = 1.13, 95% CI = [0.97, 1.34], p = .059, one-sided logis-

tic regression). The effect was consistent when pooling together trials

from both categories (All Go, OR = 1.18, 95% CI = [1.01, 1.37],

p = .016, one-sided logistic regression), with no differential effect

found for high- versus low-value pairs (OR = 1.07, 95% CI = [0.94,

1.22], p = .31, two-sided logistic regression).

Examining the preference for high-value over low-value stimuli in

the sanity-check trials, we found that participants consistently
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preferred stimuli of initial high-value, both in the first session (prop.

= 89.25%, OR = 12.83, 95% CI = [6.41, 25.67], p = 2.7E−13, one-sided

logistic regression), as well as in the 1-month follow-up session (prop.

= 86.36%, OR = 15.58, 95% CI = [5.11, 46.81], p = 6.1E−7, one-sided

logistic regression).

3.2 | Eye-tracking

3.2.1 | Passive viewing task

In the passive viewing task, before CAT, participants gazed the Go

and NoGo stimuli for a similar duration of the 2-s presentation

(MGo = 84.32%, MNoGo = 84.56%, t[25] = −0.192, p = .849, two-sided

linear regression). After CAT, participants maintained similar gaze

duration for Go and NoGo stimuli (MGo = 76.70%, MNoGo = 78.78%,

t[25] = −1.09, p = .284, two-sided linear regression). Similarly, in the

1-month follow-up session, we did not observe a difference in gaze

time of Go versus NoGo stimuli (MGo = 80.70%, MNoGo = 81.71%,

t[13] = −0.82, p = .423, two-sided linear regression).

3.2.2 | Training

During the eight training scans (16 CAT runs), participants fixated on

the Go stimuli for a mean duration of 88.3% of the 1 s presentation

and the NoGo stimuli for a mean of 87.4%. Modeling the proportion

of time participants viewed the stimuli, using Go/NoGo and initial

subjective value (high/low) as factors, revealed no difference between

Go and NoGo stimuli gaze duration (t[31] = 1.45, p = .156, two-sided

linear regression) and no differential effect of value was found

(t[31] = 0.874, p = .389, two-sided linear regression).

In an additional exploratory analysis, we examined the effect of time

across training (modeled as scan number) on gaze pattern. We observed

an increasingly growing gaze-bias pattern between Go and NoGo—that is,

while in early scans of training no differencewas observed in gaze duration

forGo (Mscan1 = 90.29%) versusNoGo (Mscan1 = 91.44%) stimuli, themean

difference increased over time to amaximal difference in the last scanwith

longer gaze duration for Go (Mscan8 = 89.47%) compared to NoGo stimuli

(Mscan8 = 83.97%; linear trend effect: t[31.13] = 4.99, p = 2.2E−5, two-

sided mixed linear regression). We examined whether this gaze-bias

observed in the last training scan (measured as the difference in relative

time participants viewed the Go vs. NoGo stimuli) correlated with the

effect of CAT as measured in the probe phase. We did not find a signifi-

cant correlation between gaze-bias and the CAT effect (r = .141, t

[57.83] = 1.19, p = .238, two-sidedmixed linear regression).

3.2.3 | Probe

In the probe task, we found that participants in the first session overall

viewed the selected stimuli more than the unchosen stimuli, as

expected in a binary choice task (Krajbich, Armel, & Rangel, 2010).

When Go stimuli were chosen, participants fixated on the Go stimuli

for a longer duration (MGo = 42.36%, MNoGo = 31.67%, t[28.20] = 9.89,

p = 1.1E−10, two-sided mixed linear regression) and similarly, when

NoGo stimuli were chosen, participants fixated on the NoGo stimuli for

a longer duration (MGo = 31.25%, MNoGo = 43.40%, t[28.00] = −10.91,

p = 1.4E−11, two-sided mixed linear regression).

Participants did not view Go stimuli more compared to NoGo stimuli,

neither when comparing the gaze time of the stimuli when they were cho-

sen (MGo/Chosen = 42.36%, MNoGo/Chosen = 43.40%, t[28.90] = −0.83,

p = .412, two-sided mixed linear regression), nor when comparing

the time when the stimuli were not chosen (MGo/NotChosen = 31.25%,

MNoGo/NotChosen = 31.67%, t[29.28] = −0.26, p = .794, two-sided mixed

linear regression). Adding the value category (high vs. low) to the regression

model had no significant effect (t[27.80] = 0.30, p = .764, two-sided mix-

ed linear regression), indicating the gaze pattern was consistent across all

probe trials.

In the 1-month follow-up session, participants demonstrated

similar patterns. Participants gazed the chosen stimuli more than the

unchosen stimuli, with no differences between Go and NoGo stimuli

(MGo/NotChosen = 28.81%, MNoGo/NotChosen = 28.24%, t(57.97) = −0.76,

p = .451, two-sided mixed linear regression [close to singular fit];

MGo/Chosen = 38.35%, MNoGo/Chosen = 38.87%, t(13.71) = −0.37,

p = .717, two-sided mixed linear regression).

3.3 | Imaging

In the fMRI analyses, we focused on the BOLD response for Go stimuli

in order to study the neural mechanisms underlying the preference

change induced by CAT. We first present the results focusing on the

face-selective network (ROI analysis and exploratory SVM modeling),

followed by a whole-brain and SVC univariate GLM analyses for the

three tasks scanned (training, passive viewing, and probe), and finally, we

present results of the gPPI connectivity analysis for the training task.

3.3.1 | Face regions ROI analysis

An independent face localizer task was used to functionally identify,

for each participant, three ROIs of face selective brain regions: FFA

(right FFA and left FFA, both identified in 95.24% of participants),

OFA (right OFA identified in 59.52% and left OFA in 61.90% of par-

ticipants) and pSTS (right pSTS identified in 95.24% and left pSTS in

78.57% of all 42 valid participants). For each identified ROI, we

extracted the mean response of all voxels within the ROI, and exam-

ined the response across the group in our three predefined con-

trasts: (a) All Go stimuli, (b) All Go > NoGo stimuli, and (c) All Go stimuli

modulated by choice. In all three tasks, we were unable to identify

stronger responses of face selective regions to Go versus NoGo face

stimuli. A single exception was observed in the last scan of the train-

ing task, where a stronger response to Go versus NoGo trials was

observed in the right pSTS (Mdiff = 0.012, SE = 0.003, t[39] = 4.22,

p = 1.42E−4, pcorrected = 8.5E−4) and the left pSTS (Mdiff = 0.012,
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SE = 0.003, t[32] = 3.74, p = 7.23E−4, pcorrected = .004). However, this

result was not unique to the late stages of training, and was apparent

also in the first scan (pSTS right: Mdiff = 0.017, SE = 0.002, t

(39) = 6.82, p = 3.83E−8, pcorrected = 2.30E−7; pSTS left: Mdiff = 0.018,

SE = 0.003, t(32) = 6.47, p = 2.78E−7, pcorrected = 1.67E−6). In all three

tasks (training, passive viewing, and probe), we did not find a signifi-

cant correlation between the CAT behavioral effect and mean per-

cent signal change in participants' face selective regions. None of

the models based on functionally defined face selective ROIs

exceeded in statistical significance the threshold of (Bonferroni

corrected) p < .05.

3.3.2 | Face regions SVM analysis

In an exploratory analysis, we used an SVM to explore whether

information stored within face processing network (only FFA and

pSTS, see Section 2.8.3) could classify participants according to

their consequent behavioral change following CAT, that is, differ

participant with above-median behavioral change effect from par-

ticipants with below-median effect. One SVM model using the FFA

and pSTS mean response to all Go stimuli within the last training

run (a contrast also presented below in the univariate GLM analysis

of the training task and in Figure 3a), was able to accurately classify

66.67% of participants in a leave-one-participant-out CV test (true-

positive = 21.43%, true-negative = 45.24%, false-positive = 4.76%,

false-negative = 28.57%; see Figure S2). In a permutation test with

5,000 permutations, the SVM model performance was found

marginally within the top 5% of models (p = .049, one-sided permu-

tation test), resulting in alternating significance conclusion,

depending on the number of permutations and randomization seed.

Using the ROI response to Go stimuli in the probe and passive

viewing task, did not result in classification models exceeding sta-

tistical significance of p < .05.

3.3.3 | Cue-approach training

In the training task, we analyzed the BOLD response during eight

scans, each with two runs (two repetitions of all training stimuli).

Examining the correlation between the BOLD response to Go

stimuli during the last scan revealed an association between CAT

behavioral effect and BOLD activity of the left ventral striatum,

mainly putamen and nucleus accumbens—that is, participants who

chose the Go over the NoGo stimuli more during the subsequent

probe were characterized with stronger response in the left ventral

striatum to Go stimuli during the last training scan (cluster size = 154

voxels, max Z-value = 3.76, p = .042; Figure 3a). Furthermore, using a

striatal SVC analysis, a similar marginal trend was also observed within

the contralateral head of caudate nucleus and nucleus accumbens in

response to Go minus NoGo stimuli contrast, though after Bonferroni

correction these did not exceed statistical significance (cluster size = 67

voxels, max Z-value = 3.24, p = .023, pcorrected = .092). These effects

were unique to Go stimuli, and not found for NoGo training trials.

When contrasting the last scan with the first scan, no region

showed an increase in activation to Go over NoGo stimuli. However,

examining the same contrast (Go stimuli > NoGo stimuli [last scan >

first scan]) in correlation with the probe effect, showed a positive corre-

lation between the BOLD signal and behavioral change effect, mainly in

the premotor regions in the posterior dorsomedial frontal cortex (clus-

ter size = 257 voxels, max Z-value = 4.04, p = .001; Figure 3b).

Our behavioral eye-tracking analysis revealed that in the last training

scan, participants exhibited a gaze-bias effect, fixating more on Go com-

pared to NoGo stimuli (although this did not correlate with behavior

change). To further explore this finding, we performed an additional

exploratory correlation analysis of fMRI with gaze-bias. The analysis was

similar to the correlation with the CAT effect analysis, except in this case,

BOLD signal was correlated with the gaze-bias of the last scan (mea-

sured as the mean proportion of time a participant viewed the Go stimuli

minus that of NoGo stimuli). We found a correlation between gaze-bias

X = -15 Y = 8

LR

Training: All Go (last scan) - correlation with CAT effect

Z = 2.3

Z = 4.3

X = -4 Y = -2

LR

(a) (b) All Go > NoGo (last scan > first scan) - correlation with CAT effect

F IGURE 3 Training imaging results—correlation analysis. (a) BOLD signal during the last scan of training task correlated with the cue-approach

training (CAT) behavioral change effect, that is, the proportion of trials a participant chose the Go stimulus during subsequent probe phase. Striatal
response to Go stimuli in putamen and nucleus accumbens correlated with CAT effect. (b) Increased BOLD response in premotor regions, during the last
scan contrasted with first scan of training task, correlated with the CAT behavioral change effect. All results were cluster-corrected at a whole-brain
level, p < .05. Coordinates reported in standard Montreal Neurological Institute (MNI) space. For a list of anatomical regions within each cluster, see
Tables S3-1 and S3-2. Full cluster-corrected and unthresholded maps are available at: https://neurovault.org/collections/NGTUHMTF/images/132467/,
https://neurovault.org/collections/NGTUHMTF/images/132468/, https://neurovault.org/collections/NGTUHMTF/images/132469/, and https://
neurovault.org/collections/NGTUHMTF/images/132470/ [Color figure can be viewed at wileyonlinelibrary.com]
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and the BOLD activity of Go minus NoGo stimuli, in the anterior cingu-

late cortex (ACC; cluster size = 148 voxels, max Z-value = 4.06, p = .032)

as well as cerebellum and lateral occipital cortex (see: Figure S3a). We

also found a correlation between gaze-bias and the BOLD activity mainly

within the vmPFC (cluster size = 210 voxels, max Z-value = 4.35,

p = .003, see Figure S3b) and more dorsal medial PFC, that is,—

participants with more positive vmPFC response to Go stimuli, also had

larger gaze-bias for Go stimuli in the last training scan. This effect was

unique to Go stimuli, and was not observed in NoGo trials.

3.3.4 | Passive viewing

In the passive viewing task, we analyzed participants' response to Go

and NoGo stimuli in the absence of response or external cues in three

timepoints: once before the training procedure, a second time after train-

ing and a third time after a mean period of 1 month. Comparing the

response after training to pretraining baseline, revealed no regions with

enhanced response to both high and low-value Go stimuli following

training. In the 1-month follow-up session, Go stimuli invoked a stronger

response in comparison to the pretraining scan within ventral regions of

the lateral occipital cortex and fusiform gyrus as well as more dorsal lat-

eral occipital cortex. However, these results were not unique to Go stim-

uli; similar overlapping regions were also identified when testing the

same contrast (follow-up > before training) for NoGo stimuli.

In addition to the main contrasts, we also examined a regres-

sor parametrically modulated by the initial subjective value (Colley

score) of all stimuli in the task. Examining this regressor, did not

reveal significant clusters which show stronger response to stimuli

of higher initial subjective value.

3.3.5 | Probe

Overall, across the entire group, no brain region area showed consis-

tently stronger response to trials where Go stimuli were chosen in

comparison to trials where NoGo stimuli were chosen. However, we

found that vmPFC activation to Go versus NoGo choices (beyond

value category, as preregistered) positively correlated across partici-

pants with the proportion of trials each participant chose the Go stim-

uli in the probe; that is, participants who demonstrated stronger

preference for Go stimuli also had stronger response within the

vmPFC when choosing Go stimuli versus when choosing the NoGo

stimuli (cluster size = 153 voxels, max Z-value = 4.07, p = .012;

Figure 4). The same contrast revealed additional regions including

precuneus, bilateral anterior temporal cortex and bilateral cerebellar

cortex (see Table S5 for full statistical details).

In the 1-month follow-up probe, no region showed enhanced

response to Go choices over NoGo, nor a correlation with CAT effect,

across both value categories.

3.3.6 | Connectivity analysis using gPPI during
training

In the gPPI analysis, we used the striatum activation found in the

training task (Figure 3) and the vmPFC activation found in the

probe task (Figure 4) as seed ROIs. Seed masks of 5-mm sphere of

voxels within the activation clusters were defined and were evalu-

ated for response to Go versus NoGo stimuli during training. We

examined which brain regions demonstrated significantly larger

association with the seeds' activation during Go trials versus NoGo

trials. Using response of the vmPFC seeds, we found that several

brain regions showed stronger functional connectivity, including a

large bilateral region across the SPLs to precentral gyrus, middle,

and posterior temporal sulcus (Figure 5a), as well as the right lateral

occipital cortex, dorsolateral prefrontal cortex, and cerebellum (see

detailed statistical description in Table S5-1). In the case of the stri-

atum seed PPI, we found several regions where stronger connectiv-

ity correlated with CAT behavioral effect, including left lateral

orbito-frontal cortex (cluster size = 322 voxels, max Z-value = 4.19,

p = 7.82E−5; Figure 5b), right frontal operculum, medial superior

frontal gyrus, and cerebellum (see detailed statistical description in

Table S5-2).

X = 4 X  = -58

LR

Y = -2

Probe: Go Choice > NoGo Choice - correlation with CAT effect

Z = 2.3

Z = 4.3

F IGURE 4 Probe task imaging results. Immediately after training, cue-approach training effect correlated with enhanced BOLD response to
Go choices over NoGo choices, within several regions including the vmPFC and anterior middle temporal gyri. Results were cluster-corrected at a
whole-brain level, p < .05. Coordinates reported in standard Montreal Neurological Institute (MNI) space. For a list of anatomical regions within
each cluster, see Table S5. cluster-corrected and unthresholded maps are available at: https://neurovault.org/collections/NGTUHMTF/
images/132471/ and https://neurovault.org/collections/NGTUHMTF/images/132472/ [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

The current work examined the neural mechanisms underlying

nonreinforced behavioral change using CAT with face stimuli.

Behaviorally, we found that CAT resulted in enhanced preference

for the associated Go over NoGo stimuli, which was generally

maintained 1 month after training. The current study is the first to

link individual differences in nonreinforced behavior change fol-

lowing CAT with corresponding neural mechanisms using fMRI.

We show a link between individual differences in behavior in the

task with enhanced striatal activity during nonreinforced training,

and enhanced vmPFC activity during binary-choices. We further

show evidence for enhanced PFC connectivity with both the stria-

tum and visual areas associated with nonreinforced preference

modification.

The behavioral probe results are in line with the preregistered

hypotheses, based on previous work with CAT (Bakkour et al., 2016,

2017; Botvinik-Nezer et al., 2019; Schonberg et al., 2014; Veling

et al., 2017; Zoltak et al., 2018) and specifically with faces (Salomon

et al., 2018). The behavioral effect of CAT on preferences is a group

effect comprised of individual variability across participants, as

highlighted in a recent study with prefrontal lesion patients (Aridan,

Pelletier, Fellows, & Schonberg, 2019). Thus, our current work aimed

to uncover both the common neural modifications across the entire

group, as well as the neural signatures associated with individual dif-

ferences in behavior, using face stimuli.

We selected face stimuli for the current fMRI study due to their

unique characteristics, as one of the most prominent stimuli in the life

of human beings. Modification of face-related preferences can be

potentially developed into applicable means to treat various psychologi-

cal disorders and undesired social biases, beyond the confinements of

the lab (Browning et al., 2012; Meissner & Brigham, 2001; Stamarski &

Son Hing, 2015). In addition, from a research perspective, face stimuli

are selectively processed by a well-defined network of specialized

regions, primarily the FFA, OFA, and pSTS (Fox et al., 2009; Kanwisher

et al., 1997; Yovel & Kanwisher, 2004), as well as elicit robust and sta-

ble preference response (Aharon et al., 2001; Kranz & Ishai, 2006;

Senior, 2003). We used both an ROI analysis approach examining the

fMRI signal in these regions as well as an exploratory SVM approach.

The ROI analyses did not yield significant results that implicate face-

selective regions in nonreinforced behavioral change. During the train-

ing phase, an enhanced response of pSTS to Go over NoGo stimuli was

observed. However, this effect was not unique to late training scans,

thus indicating that enhanced response of pSTS during Go trials was

likely due to its adjacency to auditory regions, which were strongly acti-

vated by the auditory cue during Go trials.

Using an exploratory SVM model with the response of face ROI

in the last training scan, we were able to classify participants with

X = 51 Y = -25
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PPI (vmPFC seed) - Training: Go > NoGo (last scan)

Z = 2.3

Z = 4.3

(a)

X = 4

vmPFC seed

X = -33 Y = 55

LR

PPI (striatum seed) - Training: Go > NoGo (last scan) - correlation with CAT effect

Z = 2.3

Z = 4.3

(b)

Y = 6
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F IGURE 5 Training generalized psychophysiological interaction (gPPI) results. Regions showing greater connectivity with seed's activity to Go
over NoGo trials. (a) A vmPFC seed (in green) showed in gPPI analysis stronger connectivity with regions in the superior temporal sulcus (STS) in
response to Go versus NoGo stimuli during the last scan of training. (b) Connectivity of striatum seed (green) and orbito-frontal cortex during
training, correlated with stronger behavioral effect in subsequent probe phase. Results were whole-brain cluster-corrected, p < .05. Coordinates
reported in standard Montreal Neurological Institute (MNI) space. For a list of anatomical regions within each cluster, see Tables S5-1 and S5-2.
Full maps are available at: https://neurovault.org/collections/NGTUHMTF/images/132473/, https://neurovault.org/collections/NGTUHMTF/
images/132474/, https://neurovault.org/collections/NGTUHMTF/images/132475/, and https://neurovault.org/collections/NGTUHMTF/
images/132476/ [Color figure can be viewed at wileyonlinelibrary.com]
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above-median behavioral-change effect, only slightly better than per-

muted null-models (CV accuracy = 66.67%, p = .049, one sided per-

mutation test; see Figure S2). Considering the exploratory nature of

this analysis and degrees of freedom in design, this finding should be

appropriately taken with caution (Carp, 2012; Ioannidis, 2005). Addi-

tional replications with stringent statistical significance are needed to

decisively conclude that face-selective ROIs play a significant role in

nonreinforced behavioral change following CAT.

Interestingly, in a whole-brain analysis examining the neural

response during training, we found for the first time a correlation

between individual differences of preference modification following

CAT and striatal activity, including mainly the left putamen and

nucleus accumbens (Figure 3). Thus, participants with greater striatal

responses to Go stimuli during the late training phases, also showed

greater preference for Go stimuli in the subsequent probe phase. A

similar correlation trend was observed in the contralateral striatum

(right caudate nucleus and nucleus accumbens) using a striatal SVC

analysis, when contrasting Go with NoGo trials (although the results

did not exceed statistical significance following Bonferroni correction

for the four ROIs tested with SVC).

These results show for the first-time evidence of striatal contribu-

tion to preference modification following nonreinforced training. This

striatal activity, which is usually observed in reinforcement-learning para-

digms (O'Doherty et al., 2004; Pessiglione et al., 2006; Rangel et al.,

2008), suggests that even in the absence of external overt feedback or

reinforcements, CAT induces preference modification via reinforcement-

like mechanisms. Identifying individual differences in learning patterns

across the participants' striatal response, that was observed in the cur-

rent study, resonates with results of previous paradigms using mone-

tary rewards (e.g., Schonberg, Daw, Joel, & O'Doherty, 2007).

It has been suggested that the conjunction of motor control along

with reinforcement signals processing within the striatum, are a key

feature in the striatum's role in learning (Collins & Frank, 2014; Tricomi,

Delgado, & Fiez, 2004). These striatal signals correspond with previous

behavioral findings that demonstrated the importance of both a rapid

button press and a challenging cue in order to induce behavioral change

with CAT (Bakkour et al., 2017). However, the association of a motor

response with the cue poses limitations on the ability to disentangle

the striatum's role in learning from its functionality in motor control. An

alternative explanation could claim that the striatal response observed

here, signifies a correlation of choice behavior with enhanced motor

planning (Gerfen et al., 1990), also suggested by our result showing cor-

relation with premotor frontal regions. As training progresses, for some

participants the Go-cue becomes easier to predict and initiate motor

planning processes, which might be in turn associated with both striatal

signal and subsequent choices. However, we suggest that it is unlikely

that the CAT effect on behavior depends purely on motor planning, as

a previous behavioral study showed that training with the hand and

choosing with the eyes during probe still yielded an enhanced prefer-

ence effect (Bakkour et al., 2016). Future imaging studies could aim to

replicate a similar effect by scanning training with an independent

response module such as eye-movements, in order to differentiate the

striatal motor role from its learning one.

Overall, we did not see a clear pattern of longer gaze for Go over

NoGo stimuli in the probe and passive viewing task. However, in an

exploratory analysis of the training task, we found a developing gaze-bias

pattern. This pattern manifested in relatively longer fixations on the Go

stimuli compared with NoGo stimuli in the last scans of the training task.

However, this difference was not correlated with subsequent choices in

the probe task. We further examined the neural correlates of this gaze-

bias effect in the last training scan and revealed an interesting correlation

with the response of ACC to Go over NoGo stimuli, as well as vmPFC

response to Go stimuli; both regions are associated with valuation pro-

cesses in general (Bartra et al., 2013), and specifically with valuation of

face stimuli (Smith et al., 2014). These findings raise interesting hypothe-

ses regarding the interaction of the brain valuation system and gaze pat-

tern observed here. It could be that greater gaze-bias is formed due to a

stronger value neural response (Krajbich et al., 2010; Krajbich & Rangel,

2011); although the causal direction might also be inverted, as stimuli

attracting more attention and processing could evoke stronger value-

related signals (Lim, O'Doherty, &Rangel, 2013). Nonetheless, it is impor-

tant to note that this gaze-bias was not correlated with greater

preference for Go stimuli in the subsequent probe phase. It is possible

that a gaze bias develops prior to behavioral change and thus these neu-

ral modification in the value-processing brain regions, will later in be

related to future preferences modification effect of CAT during probe.

Considering the exploratory nature of this analysis, future studies could

aim to replicate this effect, as well as examine the causal directionality,

for example, by experimentally manipulating gaze and examining the

involvement of value-processing brain regions.

We found a correlation between vmPFC activity during the binary

choice probe and the individual differences in the CAT behavioral effect.

Participants who chose the Go stimuli overall more, also demonstrated

stronger vmPFC fMRI response for Go choices over NoGo probe

choices. This finding resonates, though does not directly replicates, previ-

ous findings with CAT, that showed the enhanced vmPFC activity in the

probe task was modulated by a parametric choice effect for specific Go

stimuli; that is, vmPFC was more strongly activated for Go stimuli which

were chosen more during the probe task (Bakkour et al., 2017;

Schonberg et al., 2014). Our finding, in line with these previous results,

suggests that the CAT effect on choices engages frontal decision-making

neural mechanisms (Bartra et al., 2013; Clithero & Rangel, 2014; Kable &

Glimcher, 2009; Rangel et al., 2008). Several differences between the

current work and previously published imaging studies with CAT could

potentially account for the divergence in imaging results of the current

study. Primarily, all previous imaging studies were performed with snack-

food items and in the probe phase, choices were made for actual con-

sumption at the end of the experiment (Bakkour et al., 2017; Botvinik-

Nezer et al., 2019; Schonberg et al., 2014). In contrast, in the current

work, probe choices of preferred face stimuli had no actual conse-

quences. Therefore, it is possible that the different choice context

induced less robust within-participant value responses (Seymour &

McClure, 2008). This hypothesis can also putatively account for the non-

replicated eye-tracking findings, during the probe phase. While in previ-

ous CAT studies with snack-food items, unchosen Go stimuli attracted

participants' gaze for longer duration compared to unchosen NoGo
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stimuli during the probe phase (Bakkour et al., 2016; Schonberg et al.,

2014), in the current work we did not find this effect. This hypothesis

could be tested in future research by introducing additional features

which would enhance the engagement of the participants with the

choice procedure, such as introducing a payment method or realization

of choices in a prospective part of the task (e.g., Smith et al., 2014).

In the same probe analysis, we found a correlation of the choice

effect across participants with activity in middle temporal gyri that

had been previously linked to high-level visual processing of faces

(Winston, Henson, Fine-Goulden, & Dolan, 2004). These findings

might point to the involvement of visual-processing regions, especially

high-level processing ones along the STS, in co-operation with pre-

frontal value-processing regions. This finding is in line with recent

findings of enhanced visual processing for Go stimuli during passive

viewing, following CAT (Botvinik-Nezer et al., 2019).

In the passive viewing tasks, we did not find regions in which

fMRI activity was modulated by the initial subjective value. It is possi-

ble that the design of the passive viewing task, with only one short

presentation for each stimulus in each time point and relatively short

ISI, was not sensitive enough to detect differences in values. In this

study, we focused on the training and probe tasks and could not allo-

cate more time for the passive viewing one. In order to increase the

detection power, it could have been beneficial to use a different task

design, for example, design with longer durations, greater number of

repetitions, or a task that requires participants to respond to the value

property of each stimulus, similarly to the designs used in previous

work examining value processing in the brain (e.g., Aharon et al., 2001;

Chib et al., 2009; Kranz & Ishai, 2006; Lebreton et al., 2009). Our

follow-up session included a subsample of n = 25 participants (out of

potential N = 42), as data collection was halted due to a scanner

upgrade. The smaller follow-up sample size might have resulted in

reduced power to detect more subtle effects (Button et al., 2013; Open

Science Collaboration, 2015; Yarkoni, 2009). Future studies

can address the question of long-term maintenance mechanisms, by

conducting a larger-scale longitudinal experimental design.

Finally, in a gPPI analysis of the training task, we found task-

related connectivity of the vmPFC seed with pSTS. This finding fur-

ther resonates the probe finding linking vmPFC and high-level visual

processing regions, as well as enhanced visual processing found previ-

ously for snacks with CAT (Botvinik-Nezer et al., 2019). These results

also correspond with previous work, which had showed that greater

connectivity of vmPFC with middle temporal regions was associated

with value processing of faces (Smith et al., 2014). Our results could

reflect more intense valuation processing (Serences & Yantis, 2006),

further suggesting that strengthened visual-frontal associations play a

role in integrating visual stimuli information with general value proper-

ties encoded in the vmPFC (Lim et al., 2013). The connectivity of the

striatum seed with lateral orbitofrontal cortex (OFC) was found to be

correlated with the preference effect across the sample. Participants

with stronger striatum-OFC connectivity also had stronger preference

for Go stimuli. Thus, this connectivity result further implicates that

stronger connectivity of striatum with value-related OFC, contributes

to successful nonreinforced behavioral change.

In conclusion, the current study sheds new light on the neural

mechanisms underlying nonreinforced behavioral change. Our results

show that preference modification is unlikely to occur within the face-

selective brain network. However, we found for the first time, that indi-

vidual differences in nonreinforced behavior change following CAT

were related to fMRI activations in the striatum, vmPFC, and their con-

nectivity with high-level visual regions. In addition to the theoretical

advancement, our findings can also serve as a basis for novel applicative

interventions, such as using striatal signals as individualized biomarker

for successful learning, and enhancing learning via personalized

neurofeedback applications without external reinforcements.
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ORCID

Tom Salomon https://orcid.org/0000-0002-1417-8163

Rotem Botvinik-Nezer https://orcid.org/0000-0003-2669-1877

Shiran Oren https://orcid.org/0000-0001-7690-3589

Tom Schonberg https://orcid.org/0000-0002-4485-816X

REFERENCES

Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O'Connor, E., &

Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI

and behavioral evidence. Neuron, 32(3), 537–551. https://doi.org/10.

1016/S0896-6273(01)00491-3

Alho, K., Salmi, J., Koistinen, S., Salonen, O., & Rinne, T. (2015). Top-down

controlled and bottom-up triggered orienting of auditory attention to

pitch activate overlapping brain networks. Brain Research, 1626,

136–145. https://doi.org/10.1016/j.brainres.2014.12.050

16 SALOMON ET AL.

https://orcid.org/0000-0002-1417-8163
https://orcid.org/0000-0002-1417-8163
https://orcid.org/0000-0003-2669-1877
https://orcid.org/0000-0003-2669-1877
https://orcid.org/0000-0001-7690-3589
https://orcid.org/0000-0001-7690-3589
https://orcid.org/0000-0002-4485-816X
https://orcid.org/0000-0002-4485-816X
https://doi.org/10.1016/S0896-6273(01)00491-3
https://doi.org/10.1016/S0896-6273(01)00491-3
https://doi.org/10.1016/j.brainres.2014.12.050


Aridan, N., Pelletier, G., Fellows, L. K., & Schonberg, T. (2019). Is ventrome-

dial prefrontal cortex critical for behavior change without external

reinforcement? Neuropsychologia, 124, 208–215. https://doi.org/10.
1016/j.neuropsychologia.2018.12.008

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric

diffeomorphic image registration with cross-correlation: Evaluating auto-

mated labeling of elderly and neurodegenerative brain. Medical Image

Analysis, 12(1), 26–41. https://doi.org/10.1016/j.media.2007.06.004

Bakkour, A., Leuker, C., Hover, A. M., Giles, N., Poldrack, R. A., &

Schonberg, T. (2016). Mechanisms of choice behavior shift using cue-

approach training. Frontiers in Psychology, 7. https://doi.org/10.3389/

fpsyg.2016.00421

Bakkour, A., Lewis-Peacock, J. A., Poldrack, R. A., & Schonberg, T. (2017).

Neural mechanisms of cue-approach training. NeuroImage, 151,

92–104. https://doi.org/10.1016/j.neuroimage.2016.09.059

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A

coordinate-based meta-analysis of subjective value. NeuroImage, 76,

412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063.The

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear

mixed-effects models using lme4. Journal of Statistical Software, 67(1),

1–48. https://doi.org/10.18637/jss.v067.i01
Bernstein, M., Erez, Y., Blank, I., & Yovel, G. (2018). An integrated neural

framework for dynamic and static face processing. Scientific Reports,

8. https://doi.org/10.1038/s41598-018-25405-9

Botvinik-Nezer, R., Salomon, T., & Schonberg, T. (2019). Enhanced

bottom-up and reduced top-down neural mechanisms drive long-

lasting non-reinforced behavioral change. Cerebral Cortex, 1–17.
https://doi.org/10.1093/cercor/bhz132

Browning, M., Holmes, E. A., Charles, M., Cowen, P. J., & Harmer, C. J.

(2012). Using attentional bias modification as a cognitive vaccine

against depression. Biological Psychiatry, 72(7), 572–579. https://doi.
org/10.1016/j.biopsych.2012.04.014

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,

Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small

sample size undermines the reliability of neuroscience. Nature Reviews

Neuroscience, 14, 365–376. https://doi.org/10.1038/nrn3475
Cahill, K., & Perera, R. (2011). Competitions and incentives for smoking

cessation. Cochrane database of systematic reviews. Cochrane Data-

base of Systematic Reviews, (4). https://doi.org/10.1002/14651858.

CD004307.pub4

Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the

analytic flexibility of fMRI experiments. Frontiers in Neuroscience, 6,

1–13. https://doi.org/10.3389/fnins.2012.00149

Chib, V. S., Rangel, A., Shimojo, S., & O'Doherty, J. P. (2009). Evidence for

a common representation of decision values for dissimilar goods in

human ventromedial prefrontal cortex. Journal of Neuroscience, 29

(39), 12315–12320. https://doi.org/10.1523/JNEUROSCI.2575-09.

2009

Clithero, J. A., & Rangel, A. (2014). Informatic parcellation of the network

involved in the computation of subjective value. Social Cognitive and

Affective Neuroscience, 9(9), 1289–1302. https://doi.org/10.1093/
scan/nst106

Cloutier, J., Heatherton, T. F., Whalen, P. J., & Kelley, W. M. (2008). Are

attractive people rewarding? Sex differences in the neural substrates

of facial attractiveness. Journal of Cognitive Neuroscience, 20(6).

https://doi.org/10.1162/jocn.2008.20062

Colley, W. (2002). Colley's bias free college football ranking method: The

colley matrix explained. Retreived from http://www.colleyrankings.

com/matrate.pdf.

Collins, A. G. E., & Frank, M. J. (2014). Modeling interactive learning and

incentive choice effects of striatal dopamine. Psychological Review,

121(3), 337–366. https://doi.org/10.1037/a0037015
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analy-

sis: I. Segmentation and surface reconstruction. NeuroImage, 9(2),

179–194. https://doi.org/10.1006/nimg.1998.0395

Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized

EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19(2),

430–441. https://doi.org/10.1016/S1053-8119(03)00073-9
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI

inferences for spatial extent have inflated false-positive rates. Proceed-

ings of the National Academy of Sciences of the United States of America,

113(28), 7900–7905. https://doi.org/10.1073/pnas.1602413113
Elliott, R., Zahn, R., Deakin, J., & Anderson, I. (2011). Affective cognition

and its disruption in mood disorders. Neuropsychopharmacology, 36(1),

153–182. https://doi.org/10.1038/npp.2010.77
Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I.,

Erramuzpe, A., … Gorgolewski, K. J. (2019). fMRIPrep: A robust

preprocessing pipeline for functional MRI. Nature Methods, 16,

111–116. https://doi.org/10.1038/s41592-018-0235-4

Fellows, L. K. (2011). The Neurology of Value. In J. A. Gottfried (Ed.),

Neurobiology of Sensation and Reward. Boca Raton (FL): CRC Press/

Taylor & Francis.

Fox, C. J., Iaria, G., & Barton, J. J. S. (2009). Defining the face processing net-

work: Optimization of the functional localizer in fMRI. Human Brain

Mapping, 30(5), 1637–1651. https://doi.org/10.1002/hbm.20630

Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z. V. I., Chase, T. N.,

Monsma, F. J., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-

regulated gene expression of striatonigral and striatopallidal neurons. Sci-

ence, 250(4986), 1429–1432. https://doi.org/10.1126/science.2147780
Gildersleeve, K., & Loken, E. (2013). The garden of forking paths: Why multi-

ple comparisons can be a problem, even when there is no “fishing expedi-

tion” or “p-hacking” and the research hypothesis was posited ahead of

time. Columbia University. http://www.stat.columbia.

edu/~gelman/research/unpublished/p_hacking.pdf

Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Model-

ing regional and psychophysiologic interactions in fMRI: The impor-

tance of hemodynamic deconvolution. NeuroImage, 19(1), 200–207.
https://doi.org/10.1016/S1053-8119(03)00058-2

Glimcher, P. W., & Fehr, E. (2013). Neuroeconomics: Decision making and

the brain. In: P. W. Glimcher & E. Fehr, (Eds.) (2nd ed.). Oxford, UK:

Academic Press.

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S.,

Duff, E. P., … Poldrack, R. A. (2016). The brain imaging data structure, a

format for organizing and describing outputs of neuroimaging experi-

ments. Scientific Data, 3, 1–9. https://doi.org/10.1038/sdata.2016.44
Ioannidis, J. P. A. (2005). Why most published research findings are

false. PLoS Medicine, 2(8), 696–701. https://doi.org/10.1371/

journal.pmed.0020124

Kable, J. W., & Glimcher, P. W. (2009). The neurobiology of decision: Con-

sensus and controversy. Neuron, 63(6), 733–745. https://doi.org/10.
1016/j.neuron.2009.09.003

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face

area: A module in human extrastriate cortex specialized for face per-

ception. Journal of Neuroscience, 17(11), 4302–4311. https://doi.org/
10.1098/Rstb.2006.1934

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C.

(2007). What's new in Psychtoolbox-3. Perception, 36(14), 1.

Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the compu-

tation and comparison of value in simple choice. Nature Neuroscience,

13, 1292–1298. https://doi.org/10.1038/nn.2635
Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model pre-

dicts the relationship between visual fixations and choice in value-

based decisions. Proceedings of the National Academy of Sciences of the

United States of America, 108(33), 13852–13857. https://doi.org/10.
1073/pnas.1101328108

Kranz, F., & Ishai, A. (2006). Face perception is modulated by sexual pref-

erence. Current Biology, 16(1), 63–68. https://doi.org/10.1016/j.cub.
2005.10.070

Lebreton, M., Jorge, S., Michel, V., Thirion, B., & Pessiglione, M. (2009). An

automatic valuation system in the human brain: Evidence from

SALOMON ET AL. 17

https://doi.org/10.1016/j.neuropsychologia.2018.12.008
https://doi.org/10.1016/j.neuropsychologia.2018.12.008
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.3389/fpsyg.2016.00421
https://doi.org/10.3389/fpsyg.2016.00421
https://doi.org/10.1016/j.neuroimage.2016.09.059
https://doi.org/10.1016/j.neuroimage.2013.02.063.The
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1038/s41598-018-25405-9
https://doi.org/10.1093/cercor/bhz132
https://doi.org/10.1016/j.biopsych.2012.04.014
https://doi.org/10.1016/j.biopsych.2012.04.014
https://doi.org/10.1038/nrn3475
https://doi.org/10.1002/14651858.CD004307.pub4
https://doi.org/10.1002/14651858.CD004307.pub4
https://doi.org/10.3389/fnins.2012.00149
https://doi.org/10.1523/JNEUROSCI.2575-09.2009
https://doi.org/10.1523/JNEUROSCI.2575-09.2009
https://doi.org/10.1093/scan/nst106
https://doi.org/10.1093/scan/nst106
https://doi.org/10.1162/jocn.2008.20062
http://www.colleyrankings.com/matrate.pdf
http://www.colleyrankings.com/matrate.pdf
https://doi.org/10.1037/a0037015
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1016/S1053-8119(03)00073-9
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1038/npp.2010.77
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1002/hbm.20630
https://doi.org/10.1126/science.2147780
https://doi.org/10.1016/S1053-8119(03)00058-2
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1016/j.neuron.2009.09.003
https://doi.org/10.1098/Rstb.2006.1934
https://doi.org/10.1098/Rstb.2006.1934
https://doi.org/10.1038/nn.2635
https://doi.org/10.1073/pnas.1101328108
https://doi.org/10.1073/pnas.1101328108
https://doi.org/10.1016/j.cub.2005.10.070
https://doi.org/10.1016/j.cub.2005.10.070


functional neuroimaging. Neuron, 64(3), 431–439. https://doi.org/10.
1016/j.neuron.2009.09.040

Lichtenstein, S., & Slovic, P. (Eds.). (2006). The construction of preference.

Cambridge, MA: Cambridge University Press. https://doi.org/10.

1017/CBO978051161803

Lim, S.-L., O'Doherty, J. P., & Rangel, A. (2013). Stimulus value signals in

ventromedial PFC reflect the integration of attribute value signals

computed in fusiform gyrus and posterior superior temporal gyrus.

Journal of Neuroscience, 33(20), 8729–8741. https://doi.org/10.1523/
jneurosci.4809-12.2013

McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. A. (2012). A generalized

form of context-dependent psychophysiological interactions (gPPI): A

comparison to standard approaches. NeuroImage, 61(4), 1277–1286.
https://doi.org/10.1016/j.neuroimage.2012.03.068

Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-

race bias in memory for faces a meta-analytic review. Psychology, Public

Policy, and Law, 7(1), 3–35. https://doi.org/10.1037/1076-8971.7.1.3
Mumford, J. (2007). A guide to calculating percent change with featquery.

Tech Report. Available at: http://mumford.fmripower.

org/perchange_guide.pdf

O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., &

Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in

instrumental conditioning. Science, 304, 452–454. https://doi.org/10.
1126/science.1094285

O'Doherty, J. P. (2004). Reward representations and reward-related

learning in the human brain: Insights from neuroimaging. Current

Opinion in Neurobiology, 14(6), 769–776. https://doi.org/10.1016/j.
conb.2004.10.016

Open Science Collaboration. (2015). Estimating the reproducibility of psy-

chological science. Science, 349(6251), aac4716. https://doi.org/10.

1126/science.aac4716

Peckham, A. D., McHugh, R. K., & Otto, M. W. (2010). A meta-analysis of

the magnitude of biased attention in depression. Depression and Anxi-

ety, 27(12), 1135–1142. https://doi.org/10.1002/da.20755
Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006).

Dopamine-dependent prediction errors underpin reward-seeking

behaviour in humans. Nature, 442, 1042–1045. https://doi.org/10.
1038/nature05051

Prochaska, J. J., Delucchi, K., & Hall, S. M. (2004). A meta-analysis of

smoking cessation interventions with individuals in substance

abuse treatment or recovery. Journal of Consulting and Clinical Psy-

chology, 72(6), 1144–1156. https://doi.org/10.1037/0022-006X.

72.6.1144

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework

for studying the neurobiology of value-based decision making.

Nature Reviews Neuroscience, 9, 545–556. https://doi.org/10.

1038/nrn2357

Salomon, T., Botvinik-Nezer, R., Gutentag, T., Gera, R., Iwanir, R.,

Tamir, M., & Schonberg, T. (2018). The cue-approach task as a general

mechanism for long term non-reinforced behavioral change. Scientific

Reports, 8, 1–13. https://doi.org/10.1038/s41598-018-21774-3
Schonberg, T., Bakkour, A., Hover, A. M., Mumford, J. A., Nagar, L.,

Perez, J., & Poldrack, R. A. (2014). Changing value through cued

approach: An automatic mechanism of behavior change. Nature Neu-

roscience, 17(4), 625–630. https://doi.org/10.1038/nn.3673
Schonberg, T., Daw, N. D., Joel, D., & O'Doherty, J. P. (2007). Reinforce-

ment learning signals in the human striatum distinguish learners from

nonlearners during reward-based decision making. Journal of Neurosci-

ence, 27(47), 12860–12867. https://doi.org/10.1523/JNEUROSCI.

2496-07.2007

Senior, C. (2003). Beauty in the brain of the beholder. Neuron, 38(4),

525–528. https://doi.org/10.1016/S0896-6273(03)00293-9
Serences, J. T., & Yantis, S. (2006). Selective visual attention and percep-

tual coherence. Trends in Cognitive Sciences, 10(1), 38–45. https://doi.
org/10.1016/j.tics.2005.11.008

Seymour, B., & McClure, S. M. (2008). Anchors, scales and the relative cod-

ing of value in the brain. Current Opinion in Neurobiology, 18(2),

173–178. https://doi.org/10.1016/j.conb.2008.07.010
Shomstein, S., & Yantis, S. (2006). Parietal cortex mediates voluntary control

of spatial and nonspatial auditory attention. Journal of Neuroscience, 26

(2), 435–439. https://doi.org/10.1523/JNEUROSCI.4408-05.2006

Smith, D. V., Clithero, J. A., Boltuck, S. E., & Huettel, S. A. (2014). Func-

tional connectivity with ventromedial prefrontal cortex reflects subjec-

tive value for social rewards. Social Cognitive and Affective Neuroscience,

9(12), 2017–2025. https://doi.org/10.1093/scan/nsu005
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,

Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004).

Advances in functional and structural MR image analysis and imple-

mentation as FSL. NeuroImage, 23, 208–219. https://doi.org/10.

1016/j.neuroimage.2004.07.051

Stamarski, C. S., & Son Hing, L. S. (2015). Gender inequalities in the work-

place: The effects of organizational structures, processes, practices,

and decision makers' sexism. Frontiers in Psychology, 6, 1–20. https://
doi.org/10.3389/fpsyg.2015.01400

Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate

activity by action contingency. Neuron, 41(2), 281–292. https://doi.
org/10.1016/S0896-6273(03)00848-1

Veling, H., Chen, Z., Tombrock, M. C., Verpaalen, I. A. M., Schmitz, L. I.,

Dijksterhuis, A., & Holland, R. W. (2017). Training impulsive choices

for healthy and sustainable food. Journal of Experimental Psychology:

Applied, 23(2), 204–215. https://doi.org/10.1037/xap0000112
Vieira, T. F., Bottino, A., Laurentini, A., & De Simone, M. (2014). Detecting

siblings in image pairs. The Visual Computer, 30(12), 1333–1345.
https://doi.org/10.1007/s00371-013-0884-3

Vlaev, I., Chater, N., Stewart, N., & Brown, G. D. A. (2011). Does the brain

calculate value? Trends in Cognitive Sciences, 15(11), 546–554.
https://doi.org/10.1016/j.tics.2011.09.008

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York,

NY: Springer-Verlag.

Wimmer, G. E., & Shohamy, D. (2012). Preference by association: How

memory mechanisms in the hippocampus bias decisions. Science, 338

(6104), 270–273. https://doi.org/10.1126/science.1223252
Winston, J. S., Henson, R. N. A., Fine-Goulden, M. R., & Dolan, R. J. (2004).

fMRI-adaptation reveals dissociable neural representations of identity

and expression in face perception. Journal of Neurophysiology, 92(3),

1830–1839. https://doi.org/10.1152/jn.00155.2004
Yarkoni, T. (2009). Big correlations in little studies. Perspectives on Psycho-

logical Science, 4(3), 294–298. https://doi.org/10.1111/j.1745-6924.
2009.01127.x

Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not

process specific. Neuron, 44(5), 889–898. https://doi.org/10.1016/j.
neuron.2004.11.018

Zoltak, M. J., Veling, H., Chen, Z., & Holland, R. W. (2018). Attention! Can

choices for low value food over high value food be trained? Appetite,

124, 124–132. https://doi.org/10.1016/j.appet.2017.06.010

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Salomon T, Botvinik-Nezer R,

Oren S, Schonberg T. Enhanced striatal and prefrontal activity

is associated with individual differences in nonreinforced

preference change for faces. Hum Brain Mapp. 2019;1–18.

https://doi.org/10.1002/hbm.24859

18 SALOMON ET AL.

https://doi.org/10.1016/j.neuron.2009.09.040
https://doi.org/10.1016/j.neuron.2009.09.040
https://doi.org/10.1017/CBO978051161803
https://doi.org/10.1017/CBO978051161803
https://doi.org/10.1523/jneurosci.4809-12.2013
https://doi.org/10.1523/jneurosci.4809-12.2013
https://doi.org/10.1016/j.neuroimage.2012.03.068
https://doi.org/10.1037/1076-8971.7.1.3
https://doi.org/10.1126/science.1094285
https://doi.org/10.1126/science.1094285
https://doi.org/10.1016/j.conb.2004.10.016
https://doi.org/10.1016/j.conb.2004.10.016
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1002/da.20755
https://doi.org/10.1038/nature05051
https://doi.org/10.1038/nature05051
https://doi.org/10.1037/0022-006X.72.6.1144
https://doi.org/10.1037/0022-006X.72.6.1144
https://doi.org/10.1038/nrn2357
https://doi.org/10.1038/nrn2357
https://doi.org/10.1038/s41598-018-21774-3
https://doi.org/10.1038/nn.3673
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1523/JNEUROSCI.2496-07.2007
https://doi.org/10.1016/S0896-6273(03)00293-9
https://doi.org/10.1016/j.tics.2005.11.008
https://doi.org/10.1016/j.tics.2005.11.008
https://doi.org/10.1016/j.conb.2008.07.010
https://doi.org/10.1523/JNEUROSCI.4408-05.2006
https://doi.org/10.1093/scan/nsu005
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.3389/fpsyg.2015.01400
https://doi.org/10.3389/fpsyg.2015.01400
https://doi.org/10.1016/S0896-6273(03)00848-1
https://doi.org/10.1016/S0896-6273(03)00848-1
https://doi.org/10.1037/xap0000112
https://doi.org/10.1007/s00371-013-0884-3
https://doi.org/10.1016/j.tics.2011.09.008
https://doi.org/10.1126/science.1223252
https://doi.org/10.1152/jn.00155.2004
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1111/j.1745-6924.2009.01127.x
https://doi.org/10.1016/j.neuron.2004.11.018
https://doi.org/10.1016/j.neuron.2004.11.018
https://doi.org/10.1016/j.appet.2017.06.010
https://doi.org/10.1002/hbm.24859

	Enhanced striatal and prefrontal activity is associated with individual differences in nonreinforced preference change for ...
	1  INTRODUCTION
	2  METHODS
	2.1  Codes and data accessibility
	2.2  Participants
	2.3  Materials
	2.3.1  Stimuli
	2.3.2  Cue
	2.3.3  Stimuli presentation

	2.4  Procedure
	2.4.1  Baseline evaluation of subjective preference
	2.4.2  Passive viewing: Baseline
	2.4.3  Cue-approach training
	2.4.4  Anatomical scans
	2.4.5  Passive viewing: Post training
	2.4.6  Probe
	2.4.7  Dynamic face localizer
	2.4.8  Memory
	2.4.9  Follow-up

	2.5  Imaging data acquisition
	2.6  Behavioral data analysis
	2.7  Eye-tracking data analysis
	2.8  Imaging data analysis
	2.8.1  MRI preprocessing
	2.8.2  Face region of interest analysis
	2.8.3  Face network support vector machine analysis
	2.8.4  fMRI univariate analysis
	2.8.4  Passive viewing
	2.8.4  Training
	2.8.4  Probe

	2.8.5  Contrasts of interest
	2.8.6  Anatomically defined regions of interest

	2.9  Functional connectivity: gPPI analysis
	2.10  Deviations from preregistration

	3  RESULTS
	3.1  Behavioral
	3.2  Eye-tracking
	3.2.1  Passive viewing task
	3.2.2  Training
	3.2.3  Probe

	3.3  Imaging
	3.3.1  Face regions ROI analysis
	3.3.2  Face regions SVM analysis
	3.3.3  Cue-approach training
	3.3.4  Passive viewing
	3.3.5  Probe
	3.3.6  Connectivity analysis using gPPI during training


	4  DISCUSSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


