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Abstract
Behavioral change studies and interventions focus on self-control and external reinforcements to influence preferences.
Cue-approach training (CAT) has been shown to induce preference changes lasting months by merely associating items
with neutral cues and speeded responses. We utilized this paradigm to study neural representation of preferences and their
modification without external reinforcements. We scanned 36 participants with fMRI during a novel passive viewing task
before, after and 30 days following CAT. We preregistered the predictions that activity in memory, top-down attention, and
value-processing regions will underlie preference modification. While most theories associate preferences with prefrontal
regions, we found that “bottom-up” perceptual mechanisms were associated with immediate change, whereas reduced
“top-down” parietal activity was related to long-term change. Activity in value-related prefrontal regions was enhanced
immediately after CAT for trained items and 1 month after for all items. Our findings suggest a novel neural mechanism of
preference representation and modification. We suggest that nonreinforced change of preferences occurs initially in
perceptual representation of items, putatively leading to long-term changes in “top-down” processes. These findings offer
implementation of bottom-up instead of top-down targeted interventions for long-lasting behavioral change.
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Introduction
Changing behavior is key to solving a broad range of chal-
lenges in public health. Understanding how preferences
are constructed and modified is a major challenge in the
research of human behavior with broad implications, from
basic science to offering long-lasting behavioral change
programs (Vlaev et al. 2011; Marteau et al. 2012). Most behavioral
interventions for treating conditions such as addictions and
eating disorders currently rely on reinforcements and effortful
self-control (Wood and Neal 2016). However, previous studies
suggest that these interventions tend to fail in the long term
(Jeffery et al. 2000; Prochaska et al. 2004; Christiansen et al. 2007).

In a recently introduced paradigm, named cue-approach
training (CAT), preferences for snack food items were suc-
cessfully modified in the absence of external reinforcements
(Schonberg et al. 2014). In the CAT paradigm, the mere associa-
tion of images of items with a cue and a speeded button-press
response lead to preference changes lasting months following
a single training session (Schonberg et al. 2014; Salomon et al.
2018). Current theories in the field of value-based decision-
making would not predict that a simple association of an image
with a neutral cue and a button press will affect choices lasting
months into the future. However, replicated results of over
30 samples in multiple laboratories show that participants

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz132/5549036 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 18 August 2019

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
http://orcid.org/0000-0003-2669-1877
https://orcid.org/0000-0002-1417-8163
http://orcid.org/0000-0002-4485-816X
http://orcid.org/0000-0002-4485-816X


2 Cerebral Cortex, 2019, Vol. 00, No. 00

significantly choose high-value paired items (“Go items”)
over high-value nonpaired items (“NoGo items”) following
CAT (Schonberg et al. 2014; Bakkour et al. 2016, 2017, 2018;
Veling et al. 2017; Zoltak et al. 2017). Salomon et al. (2018)
recently showed that CAT can be used to change preferences
toward various types of stimuli (snack food items, unfamiliar
faces, fractal art images, and positive affective images) with
different types of cues (neutral auditory, aversive auditory, and
visual cues), demonstrating that the underlying mechanisms
of the effect are general. Previous studies showed that the
motor response (Schonberg et al. 2014) and the cue onset
and its challenging nature (Bakkour et al. 2016) are crucial
for the CAT effect. Omission of any one of these components
diminished the preference modification effect following CAT.
Other experiments found that CAT also affects preferences
toward healthy food items (Veling et al. 2017) and can be induced
when choices are made with the eyes rather than the hands
(Bakkour et al. 2016).

Preference change following the task has been shown to last
up to 6 months following a single training session of less than 1 h
(Schonberg et al. 2014; Salomon et al. 2018), suggesting that the
task has potential to be translated into a real-world intervention
and that it involves long-term memory components.

Training in the task is performed on single items and thus
induces changes of preferences toward individual items, later
manifested in the binary choice phase. The low-level nature of
the task, involving neither external reinforcements nor high-
level executive control, but rather sensory-motor associations,
provides a unique opportunity to study in relative isolation
preference representation and modification in the brain.

The underlying neural mechanisms driving this replicable
long-lasting change remain largely unknown. Previous studies
showed that eye gaze during binary choices, following CAT,
was drawn toward high-value Go items more compared with
high-value NoGo items, even when the Go items were not
chosen (Schonberg et al. 2014). Functional MRI (fMRI), during
choices of high-value Go items alone and compared with
choices of high-value NoGo items, demonstrated an amplified
BOLD signal in the ventro-medial prefrontal cortex (vmPFC)
(Schonberg et al. 2014), a region associated with value-based
decision-making (Chib et al. 2009). Together, these results
indicate the involvement of attentional mechanisms and a
neural signature of the value change during choices of Go
compared with choices of NoGo items. Overall, these previous
studies demonstrated that fMRI data during training and choices
were not sufficient to reveal the underlying neural mechanisms
of preference change induced by the task (via training of
individual items in the absence of external reinforcements).

Therefore, here we aimed to study how preferences toward
individual items are changed in the task and uncover how
individual items’ value is represented and modified in the brain
even without external reinforcements. To do so, we introduce a
novel passive viewing task, whereby pictures of snack food items
are individually presented on the screen, while participants
perform a sham counting task. This task was performed and
scanned before, after, and 1 month following CAT. By comparing
fMRI activity during this task, we aimed to test the different
neural responses to the same images of Go versus NoGo items
after training compared with baseline, as well as for the first
time the neural changes 1 month following training. Regions
in the brain showing preference-related functional plasticity
immediately after training and 1 month later could reveal a
novel mechanism of preference representation in the brain and

specifically indicate how nonexternally reinforced training leads
to robust long-lasting preference changes.

We hypothesized that preference changes are dependent on
attentional and memory-related mechanisms, affecting value
representation. Based on previous findings (Schonberg et al.
2014; Veling et al. 2017), we hypothesized that attention-related
processes are involved in the behavioral change following CAT
and focused our predictions on top-down attention-related
regions. Moreover, we hypothesized that memory processes are
involved in the neural mechanism underlying the behavioral
change following CAT, in the short and long term. This is
following the findings that the preference changes induced
by the task, lasted for months after a single training session
(Schonberg et al. 2014; Salomon et al. 2018) and based on
recent theories for the involvement of memory in value-
based decision-making (Weber and Johnson 2006; Wimmer and
Shohamy 2012; Shohamy and Daw 2015; Shadlen and Shohamy
2016). Finally, as was previously demonstrated during the choice
phase following CAT (Schonberg et al. 2014; Bakkour et al.
2017), we hypothesized we will observe neural changes in pre-
frontal value-related regions. In our preregistered hypotheses
we predicted greater BOLD activity after CAT in response to high-
value Go items in episodic memory-related regions in the medial
temporal lobe (Brown et al. 2015), top-down attention-related
dorsal parietal cortex (Corbetta and Shulman 2002; Cabeza et al.
2008), and prefrontal value-related regions (Kable and Glimcher
2009; Padoa-Schioppa 2011). In addition, we hypothesized that
we will replicate previous CAT results showing a significant
behavioral effect of choosing high-value Go over high-value
NoGo items during the binary choice probe phase, and enhanced
BOLD activity in the vmPFC during choices of high-value Go
items (Schonberg et al. 2014; Bakkour et al. 2016, 2017, 2018;
Veling et al. 2017; Zoltak et al. 2017; Salomon et al. 2018).

Understanding the neural mechanisms underlying nonre-
inforced behavioral change could potentially set the ground
for new theories of value-based decision-making, and for new
behavioral change interventions targeting automatic processes
for long-lasting change, benefiting the lives of millions around
the world.

Materials and Methods
Data Sharing

We preregistered our sample size, hypotheses, and a “general”
analysis plan (prior to final full analyses) on the Open Science
Framework (OSF; project page, https://osf.io/x6hsq/ preregistra-
tion, https://osf.io/yu3tw/). Deviations from the preregistered
general analysis plan are described below. The behavioral data
and analysis codes are also available on the preregistered OSF
project. Imaging data are available in Brain Imaging Data Struc-
ture (BIDS) format (Gorgolewski et al. 2016) on OpenNeuro (as
well as FSL design.fsf files, confounds.tsv files, and the regions
of interest’s masks): https://openneuro.org/datasets/ds001417.
Unthresholded and thresholded statistical images of the imag-
ing results are available on NeuroVault (Gorgolewski et al. 2015):
https://neurovault.org/collections/TTZTGQNU/.

Participants

Forty healthy right-handed participants took part in this exper-
iment. The sample size was chosen before data collection and
preregistered during data collection. We initially planned to
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collect n = 35 participants based on a power analysis using a
previous imaging CAT sample (Schonberg et al. 2014), aimed
to detect with 80% power and α = 0.05 enhanced parametric
modulation of activity in the vmPFC during probe choices of
high-value Go over high-value NoGo items. During data collec-
tion, we found that attrition rates were higher than expected,
thus the planned sample size was increased to n = 40 (before
exclusions and attrition) and re-registered. The total number
of valid participants included in the final analyses of the first
session is n = 36 (19 females; age: mean = 26.11, SD = 3.46 years).
Of these participants, n = 27 returned for an additional 1-month
follow-up session (15 females; age: mean = 26.15, SD = 3.44 years).
Due to a scanner upgrade, we were unable to complete the entire
follow-up cohort as planned.

All participants had normal or corrected-to-normal vision
and hearing; had no history of eating disorders or psychiatric,
neurologic or metabolic diagnoses; had no food restrictions; and
were not taking any medications that would interfere with the
experiment. Participants were asked to refrain from eating for
4 h prior to arrival to the laboratory (Schonberg et al. 2014). All
participants gave informed consent. The study was approved
by the institutional review board at the Sheba Tel Hashomer
Medical Center and the ethics committee at Tel Aviv University.

Exclusions
A total of 4 out of the 40 participants were excluded: one par-
ticipant due to incompletion of the experiment, one based on
training exclusion criteria (7.5% false alarm rate during training),
and 2 participants with incidental brain findings; resulting in
n = 36 valid participants.

Stimuli

Sixty color images of familiar local snack food items were used
in the current experiment. Images depicted the snack package
and the snack itself on a homogenous black rectangle sized
576 × 432 pixels (see Supplementary Table 1; stimuli dataset was
created in our lab and is available online at http://schonberglab.
tau.ac.il/resources/snack-food-image-database/). All snack food
items were also available for actual consumption at the end of
the experiment. Participants were presented with the real food
items at the beginning of the experiment in order to promote
incentive compatible behavior throughout the following tasks.

Experimental Procedures

The general task procedure was similar to previous studies with
CAT (Schonberg et al. 2014; Salomon et al. 2018) and is presented
in Fig. 1. In order to test for functional changes in the neural
response to the individual items following CAT, we added a
new passive viewing task before, after, and 1 month following
training.

First, we obtained the subjective willingness to pay (WTP)
of each participant for each of the 60 snack food items using
the Becker–DeGroot–Marschak (BDM) auction procedure (Becker
et al. 1964), performed outside the MRI scanner (see Fig. 1a,g).
Then, participants entered the scanner and completed 2 passive
viewing runs while scanned with fMRI (see Fig. 1b,d), followed by
anatomical and diffusion-weighted imaging (DWI) scans. After-
wards, participants went out of the scanner and completed CAT
in a behavioral testing room at the imaging center (see Fig. 1c).
They then returned to the scanner and were scanned again with
anatomical and DWI. Then, they were scanned with fMRI while

performing 2 more runs of the passive viewing task and 4 runs
of the probe phase, during which they chose between pairs of
items (see Fig. 1e). Finally, participants completed a recognition
task outside the scanner (see Fig. 1f ). As the last task of the first
session, they again completed the BDM auction to obtain their
WTP for the snacks.

Approximately 1 month after the first session of the experi-
ment, participants returned to the lab. They entered the scanner,
were scanned with anatomical and DWI scans, and completed
2 passive viewing runs as well as another probe phase (without
additional training). Finally, participants completed the recogni-
tion and BDM auction parts, outside the scanner.

Anatomical and DWI data were obtained for each participant
before, immediately after, and 1 month following training, as
well as from a control group, used for the diffusion MRI part of
the experiment. Analyses of diffusion data are not included in
this paper.

Initial Preferences Evaluation (see Fig. 1a,g)
In order to obtain initial subjective preferences, participants
completed the BDM auction procedure (Becker et al. 1964). Partic-
ipants first received 10 Israeli Shekels (ILS; equivalent to approx.
US$2.7). During the auction, 60 snack food items were presented
on the screen one after the other in random order. For each item,
participants were asked to indicate their WTP for the presented
item. Participants placed their bid for each item using the mouse
cursor along a visual analog scale, ranging from 0 to 10 ILS with
1/450 ILS increments (task was self-paced). Participants were
told in advance that at the end of the experiment, the computer
will randomly generate a counter bid ranging from 0 to 10 ILS
(with 0.5 increments) for 1 of the 60 items. If the bid placed
by the participant exceeds the computer’s bid, he or she will
be required to buy the item for the computer’s lower bid price.
Otherwise, the participant will not be allowed to buy the snack
but gets to retain the allocated 10 ILS. Participants were told
that, at the end of the experiment, they will stay in the room for
30 min and the only food they will be allowed to eat is the snack
(in case they “won” the auction and purchased it). Participants
were explicitly instructed that the best strategy for this task was
to indicate their actual WTP for each item.

The auction task was completed twice in the first session
of the experiment: once at the beginning and once at the end
of the session. During the second auction, participants were
instructed that at the end of the experiment a single trial will
be randomly chosen from either the first or the second auction,
to be actualized.

Item Selection
For each participant, items were rank ordered from 1 (highest
value) to 60 (lowest value) based on their WTP. Then, 12 items
(ranked 7–18) were defined as high-value items to be used in
probe, and 12 items (ranked 43–54) were defined as low-value
items to be used in probe. Each group of 12 items (high-value or
low-value) was split to 2 subgroups with identical mean rank.
Six of the 12 items were chosen to be paired with the cue
during training (Go items; training procedures are described in
the following sections), and the other 6 were not paired with
the cue during training (NoGo items). This allowed us to pair
high-value Go and high-value NoGo items, or low-value Go and
low-value NoGo items, with similar initial WTPs, for the probe
binary choices. To maintain 30% frequency of Go items during
training, similar to previous studies with CAT (Schonberg et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz132/5549036 by The D

avid J. Light Law
 Library, Tel Aviv U

niversity user on 18 August 2019

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz132#supplementary-data
http://schonberglab.tau.ac.il/resources/snack-food-image-database/
http://schonberglab.tau.ac.il/resources/snack-food-image-database/


4 Cerebral Cortex, 2019, Vol. 00, No. 00

Figure 1. Outline of the experimental procedures: procedures performed inside the MRI scanner are marked with an asterisk. (a) Initial preferences were evaluated

using the BDM auction procedure. (b) In the passive viewing task, items were individually presented on the screen. (c) CAT: Participants were instructed to press a button
as fast as they could whenever they heard an auditory cue. Go items were consistently paired with the cue and button press response, while NoGo items were not.
(d) The passive viewing task was repeated after training. (e) In the probe task, participants chose their preferred item between pairs of items with similar initial

subjective preferences, one Go and one NoGo item. (f ) A recognition memory task. (g) The BDM auction was repeated. Tasks d–g were performed again in the 1-month
follow-up session.

2014; Bakkour et al. 2016, 2017; Salomon et al. 2018), we used 16
additional NoGo items. These items were also used during train-
ing and passive viewing (40 snacks overall; see Supplementary
Fig. 1 and Supplementary Table 2 for a detailed description of all
stimuli allocation).

Passive Viewing (see Fig. 1b,d)
The task was performed inside the scanner, while participants
were scanned with fMRI. This new task was introduced to
evaluate the functional changes in the neural response to the
individual items following CAT. The neural signature of the
participants’ response to each of the individual items was
obtained in 3 different time points: a baseline measurement
before CAT, after CAT, and in a 1-month follow-up. In this task,
participants passively viewed a subset of 40 items, which were
also presented during training (see item selection section and
Supplementary Fig. 1). The task consisted of 2 runs (in each
session). On each run, each of the 40 items was presented on

the screen for a fixed duration of 2 s, followed by a fixed inter-
stimulus interval (ISI) of 7 s. Items were presented in random
order. To ensure participants were observing and processing the
presented images, we asked them to perform a sham task of
silently counting how many items were of snacks containing
in a new package either one piece (e.g., a “Mars” chocolate
bar) or several pieces (e.g., “M&M’s”). At the end of each run,
participants were asked how many items they counted. Task
instructions (count one/several) were counterbalanced between
runs for each participant. The time elapsed between the 2 runs
before training and 2 runs after training was about 2 h (including
CAT, anatomical and diffusion weighted scans before and after
training, and time to exit and enter the scanner).

Cue-Approach Training (see Fig. 1c)
Training was performed outside the scanner. The training task
included the same 40 items presented in the passive viewing
task. Each image was presented on the screen one at a time for
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a fixed duration of 1 s. Participants were instructed to press a
button on the keyboard as fast as they could when they heard
an auditory cue, which was consistently paired with 30% of the
items (Go items). Participants were not informed in advance
that some of the items consistently paired with the cue, or the
identity of the Go items. The auditory cue consisted of a 180-ms-
long sinus wave function. The auditory cue was heard initially
750 ms after stimulus onset (Go-signal delay, GSD). To ensure
a success rate of around 75% in pressing the button before
stimulus offset, we used a ladder technique to update the GSD.
The GSD was increased by 16.67 ms following every successful
trial and decreased by 50 ms if the participant did not press the
button or pressed it after the offset of the stimulus (1:3 ratio).
Items were followed by a fixation cross that appeared on the
screen for a jittered ISI with an average duration of 2 s (range: 1–
6 s). Each participant completed 20 repetitions of training; each
repetition included all 40 items presented in random order. A
short break was given following every 2 training repetitions, in
which the participants were asked to press a button when they
were ready to proceed. The entire training session lasted about
40 to 45 min, depending on the duration of the breaks, which
were controlled by the participants.

Probe (see Fig. 1e)
The probe was conducted while participants were scanned
with fMRI. The probe phase was aimed to test participants’
preferences following training and as in previous studies
(Schonberg et al. 2014; Bakkour et al. 2016, 2017; Veling et al.
2017; Zoltak et al. 2017; Salomon et al. 2018) was the central
behavioral measure of the effectiveness of CAT. Participants
were presented with pairs of items that had similar initial
rankings (high-value or low-value), but only one of the items
in each pair was associated with the cue during training (e.g.,
high-value Go vs. high-value NoGo). They were given 1.5 s to
choose the item they preferred on each trial, by pressing one of
2 buttons on an MRI-compatible response box. Their choice was
highlighted for 0.5 s with a green rectangle around the chosen
items. If they did not respond on time, a message appeared
on the screen, asking them to respond faster. A fixation cross
appeared at the center of the screen between the 2 items during
each trial, as well as during the ISI, which lasted on average 3 s
(range, 1–12 s).

The probe phase consisted of 2 blocks. On each block, each
of the 6 high-value Go items were compared with each of the 6
high-value NoGo items (36 comparisons), as well as each of the
6 low-value Go items with each of the 6 low-value NoGo items.
Thus, overall there were 72 pairs of Go–NoGo comparisons (each
repeated twice during probe, once on each block). In addition,
on each block we compared 2 high-value NoGo items with 2
low-value NoGo items, resulting in 4 probe pairs that were used
as “sanity checks” to ensure participants chose the items they
preferred according to the initial WTP values obtained during
the BDM auction. Each probe block was divided to 2 runs, each
consisted of half of the total 76 unique pairs (38 trials on each
run). All pairs within each run were presented in random order,
and the location of the items (left/right) was also randomly
chosen. Choices during the probe phase were made for con-
sumption to ensure they were incentive compatible. Participants
were told that a single trial will be randomly chosen at the end of
the experiment and that they will receive the item they chose on
that specific trial. At the time of the BDM auctions, participants
still did not know which binary choice will be chosen from the
probe phase and thus the auction procedure should still have

been valid at eliciting their WTP. The participants were shown
the snack box with all snacks prior to the beginning of the
experiment.

Recognition Task (see Fig. 1f)
Participants completed a recognition task, outside the scanner.
In this task, the items from the probe phase, as well as an equal
number of new items, were presented on the screen one by one
and participants were asked to indicate for each item whether
or not it was presented during the experiment and whether
or not it was paired with the cue during training. The first 5
participants completed a binary version of the recognition task:
they first completed the old/new recognition task for all the
items and were then presented again with all the items they
recognized as old items and were asked whether or not each
item was paired with the cue (Go/NoGo recognition task). In the
follow-up session, they were again presented with the items
they indicated were old items (in the first session), in random
order, and were asked again whether each item was paired
with the auditory cue or not. In this version, each response
was a binary yes/no response (“Was this item presented during
the experiment?”). The rest of the participants completed a
different version of the task. For each answer, they had 5 possible
responses: certain yes, think yes, uncertain, think no, or certain
no. The items were presented one by one on the screen, and for
each item the participant was first asked whether this item was
presented during the experiment and then, independent of the
response to the first question, was asked whether or not it was
paired with a cue during training.

One-Month Follow-up Session
All participants were invited to the follow-up session approx-
imately 1 month after training. A subset of 27 participants
returned to the lab and completed the follow-up session. They
were scanned with anatomical and diffusion protocols, com-
pleted 2 passive viewing runs, and performed another probe
while scanned with fMRI protocols, similar to the first session.
In the follow-up session, the probe included the same pairs
as the probe of the first session, presented in a new random
order. Afterwards, participants completed another session of
the recognition task and a third BDM auction, both outside the
scanner in the testing room.

Behavioral Analysis

Analyses that were preregistered with specific directional pre-
dictions were performed using one-sided statistical tests. The
participants were included in all models as a random effect.
Exploratory analyses that were not preregistered can be found in
the Supplementary Material (Supplementary exploratory analy-
ses section).

Probe
As the central behavioral measure of the CAT effect, similar to
previous studies using cue-approach task (Schonberg et al. 2014;
Salomon et al. 2018), we performed a repeated-measures logistic
regression to compare the odds of choosing Go items against
chance level (log odds = 0; odds ratio = 1) for each trial type (high-
value/low-value). We also compared the ratio of choosing the Go
items between high-value and low-value pairs. These analyses
were conducted for each session separately.

In addition, we performed exploratory analyses of the probe
data. We tested the correlation between choices in the first
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session with choices in the follow-up session, the effect of
CAT on choices above and beyond the baseline WTP difference
between the 2 items in each probe pair and the response times
(RTs) of choices (see Supplementary exploratory analyses: cor-
relation between choices across sessions, the effect of CAT on
choices above and beyond baseline WTP difference, choices RTs).

Recognition memory
In order to similarly analyze the recognition data across the 2
versions of the task, responses from the second version (i.e., with
the confidence levels) were converted to binary yes/no answers.
“Uncertain” was considered a wrong answer. In order to test
whether Go items were better remembered than NoGo items
following CAT, we compared the hit rate (the percent of old items
that were correctly recognized as such) as well as RT in the
old/new recognition task between Go and NoGo items that were
included in the Go versus NoGo probe pairs (i.e., 6 high-value Go
items, 6 high-value NoGo items, 6 low-value Go items, and 6 low-
value NoGo items). For the RT analysis, we only included trials
with correct responses, under the assumption that shorter RTs
for correct responses reflect better memory, while shorter RTs
for incorrect responses do not.

It should be noted that this task was completed immediately
after the probe task, both in the first and in the follow-up
session. Hence, in the follow-up session the old/new task again
tested memory for the same session, rather than long-term
memory of the first session. Therefore, the Go/NoGo recognition
task may be a better indication for long-term memory, but for
the associations created during training (between the cue and
Go items) rather than for the items themselves. Moreover, in
the binary version of the task during the follow-up session (the
first 4 participants in the follow-up session), only the Go/NoGo
recognition task was performed. In addition, the recognition task
(both versions and sessions) was self-paced, and thus the RT
measure included outliers, for example when participants took
a break. Therefore, trials with RT longer than 3 standard devia-
tions (SDs) above the mean across all trials of all participants for
each version of the task were excluded from analysis.

We tested whether participants significantly remembered
the cue-item associations separately for each session, with a
logistic regression model comparing the odds of answering cor-
rectly to the Go/NoGo recognition task against 50% chance level
(log odds = 0; odds ratio = 1). We also tested the linear correlation
between the accuracy in the Go/NoGo recognition task (hits
and correct rejections, only for items that are included in the
Go/NoGo probe choices) and the proportion of choosing Go over
NoGo items across participants. As in the analysis of the old/new
recognition task, we only included the 24 items that comprised
the Go/NoGo probe comparisons, to control for the number of
times participants viewed each item as well as for the ratio of Go
versus NoGo items (which was therefore 1:1 in the recognition
analyses).

Auction
Similarly to the original CAT study (Schonberg et al. 2014), we
tested if WTP changed over time differently for Go versus NoGo
items. Due to the fact that this measure was not always been
replicable in previous studies, it was not the main measure
of effectiveness of CAT in the current study. We computed
�WTP (WTP after minus WTP before) for each item and each
participant. Then, we used a repeated-measures linear mixed
model with the �WTP as dependent variable and item type

(Go/NoGo) and WTP before as independent variables. We were
interested in the main effect of item type, that is, whether
�WTP was different for Go versus NoGo items. This analysis
was performed separately for high-value and low-value items, as
well as for the short-term change (after CAT minus before CAT)
and the long-term change (1 month following CAT minus before
CAT). In addition, we performed exploratory analyses to test
whether there was a choice effect on WTP (see Supplementary
exploratory analyses: choice effect on WTP).

Training
We performed exploratory analyses to test whether responses
during training were related to choices following training (see
Supplementary exploratory analyses: training response times
and choices).

MRI Data Acquisition

Imaging data were acquired using a 3 T Siemens Prisma MRI
scanner with a 64-channel head coil, at the Strauss imaging
center on the campus of Tel Aviv University. Functional data
were acquired using a T2∗-weighted echo planar imaging
sequence. Repetition time (TR) = 2000 ms, echo time (TE) = 30 ms,
flip angle (FA) = 90 degrees, field of view (FOV) = 224 × 224 mm,
acquisition matrix of 112 × 112. We positioned 58 oblique axial
slices with a 2 × 2 mm in plane resolution 15 degrees off the
anterior commissure posterior commissure line to reduce the
frontal signal dropout (Deichmann et al. 2003), with a space
of 2 mm and a gap of 0.5 mm to cover the entire brain.
We used a multiband sequence (Moeller et al. 2010) with
acceleration factor = 2 and parallel imaging factor (iPAT) = 2, in an
interleaved fashion. Each of the passive viewing runs consisted
of 180 volumes and each of the probe runs consisted of 100
volumes. In addition, in each scanning session (before, after,
and 1 month following training) we acquired high-resolution
T1w structural images using a magnetization prepared rapid
gradient echo (MPRAGE) pulse sequence (TR = 1.75 s, TE = 2.59 ms,
FA = 8◦, FOV = 224 × 224 × 208 mm, resolution = 1 × 1 × 1 mm
for the first 5 participants; TR = 2.53 s, TE = 2.88 ms, FA = 7◦,
FOV = 224 × 224 × 208 mm, resolution = 1 × 1 × 1 mm for the
rest of the sample. Protocol was changed to enhance the T1w
contrast and improve registration of the functional data to the
standard space).

fMRI Preprocessing

Raw imaging data in DICOM format were converted to
NIfTI format with dcm2nii tool (Li et al. 2016). The NIfTI
files were organized according to the BIDS format v1.0.1
(Gorgolewski et al. 2016). These data are publicly shared on
OpenNeuro (https://openneuro.org/datasets/ds001417). Prepro-
cessing of the functional imaging data was performed using
fMRIprep version 1.0.0-rc8 (Esteban et al. 2019), a Nipype based
tool. Each T1-weighted volume was corrected for bias field
using N4BiasFieldCorrection v2.1.0 and skull stripped using
antsBrainExtraction.sh v2.1.0 (using OASIS template). Cortical
surface was estimated using FreeSurfer v6.0.0 (Dale et al. 1999).
The skull-stripped T1-weighted volumes were co-registered
to skull stripped ICBM 152 Nonlinear template version 2009c
(Fonov et al. 2009) using nonlinear transformation implemented
in ANTs v2.1.0 (Avants et al. 2008). Functional data were
motion corrected using MCFLIRT v5.0.9. This was followed by
coregistration to the corresponding T1-weighted volume using
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boundary-based registration with 9 degrees of freedom, imple-
mented in FreeSurfer v6.0.0. Motion correcting transformations,
T1-weighted transformation, and MNI template warp were
applied in a single step using antsApplyTransformations v2.1.0
with Lanczos interpolation. Three tissue classes were extracted
from the T1-weighted images using FSL FAST v5.0.9. Voxels
from cerebrospinal fluid and white matter were used to create a
mask in turn used to extract physiological noise regressors using
aCompCor. Mask was eroded and limited to subcortical regions
to limit overlap with gray matter, and 6 principal components
were estimated. Framewise displacements were calculated for
each functional run using Nipype implementation. For more
details of the pipeline using fMRIprep see http://fmriprep.
readthedocs.io/en/1.0.0/workflows.html.

We created confound files for each scan (each run of each
task of each session of each participant), with the following
measurements: SD of the root mean squared intensity differ-
ence from one volume to the next (DVARS), absolute DVARS
values, voxelwise SD of DVARS values, and 6 motion parameters
(translational and rotation, each in 3 directions). We added
a single time point regressor (a single additional column) for
each volume with framewise-displacement value larger than
0.9, in order to model out volumes with extensive motion (i.e.,
scrubbing). Scans with more than 15% scrubbed volumes were
excluded from analysis, resulting in one excluded participant
from the analysis of the first session’s probe task. The con-
founds.tsv files (FSL format) can be found with the data shared
on OpenNeuro.

fMRI Analysis

Imaging analysis was performed using FEAT (fMRI Expert
Analysis Tool) v6.00, part of FSL (FMRIB Software Library)
(Smith et al. 2004).

Univariate Imaging Analysis—Passive Viewing
The functional data from the passive viewing task were used
to examine the functional changes underlying the behavioral
change of preferences following CAT in the short and long
terms. We used a general linear model (GLM) with 13 regressors:
8 regressors modeling each item type (high-value Go items,
high-value NoGo items that were included in the probe task,
high-value NoGo items that were not included in the probe
task, high-value “sanity check” items, and the same 4 regres-
sors for low-value items), 4 regressors modeling the mean-
centered parametric modulation by subsequent probe choices
(i.e., the proportion of trials each item was chosen during the
subsequent probe, mean centered to ensure linear indepen-
dence between these regressors and the unmodulated regres-
sors described above), for the 4 item types, which are relevant
to the Go/NoGo probe comparisons (high-value Go items, low-
value Go items, high-value NoGo items that were included in
the probe task, and low-value NoGo items that were included in
the probe task) and one regressor for all items with a parametric
modulation by the mean-centered WTP values acquired from
the first BDM auction (which was added to control for initial
WTP differences). These 13 regressors were convolved with the
canonical double-gamma hemodynamic response function, and
their temporal derivatives were added to the model. We further
included at least 9 motion regressors as confounds, as described
above. We estimated a model with the above described GLM
regressors for each passive viewing run of each participant in
a first level analysis.

In the second-level analysis (fixed effects), runs from the
same session were averaged and compared with the other
session. Two second-level contrasts were analyzed separately:
after compared with before CAT and follow-up compared with
before CAT.

All second-level analyses of all participants from after minus
before or from follow-up minus before CAT were then inputted
to a group level analysis (mixed effects), which included 2 con-
trasts of interest: one with the main effect (indicating group
mean) and one with the mean centered probe effect of each
participant (the demeaned proportion of choosing Go over NoGo
items during the subsequent probe for the relevant pair type, i.e.,
high-value, low-value, or all probe pairs). The second contrast
was used to test the correlation between the fMRI activations
with the behavioral effect across participants. The design.fsf
files (FSL format) for each participant, session, task, and analysis
level can be found with the data shared on OpenNeuro.

All reported group level statistical maps were thresholded at
Z > 2.3 and cluster-based Gaussian random field corrected for
multiple comparisons at the whole-brain level with a (corrected)
cluster significance threshold of P = 0.05 (Worsley 2001).

Since we found a stronger behavioral effect for high-value
items, similarly to previous cue-approach samples with snack
food items (Schonberg et al. 2014; Salomon et al. 2018), we
focused our analyses on the contrasts for high-value items:
high-value Go items, high-value Go items modulated by choice,
and high-value Go minus high-value NoGo items. For complete-
ness, we report the results of these contrasts with low-value
items (low-value Go items, low-value Go items modulated by
choice, and low-value Go minus low-value NoGo items), as well
as a direct comparison between high-value and low-value items
(i.e., high-value Go minus low-value Go items).

Univariate Imaging Analysis—Probe
Imaging analysis of the probe data was similar to previous
imaging studies with CAT (Schonberg et al. 2014; Bakkour et al.
2017). We included 16 regressors in the model (in addition to
at least 9 motion regressors as described above), based on the
initial value of the probe pair (high/low) and the choice outcome
(participant chose the Go/NoGo item), resulting in 4 regressors
(high-value chose Go/high-value chose NoGo/low-value chose
Go/low-value chose NoGo) without parametric modulation; the
same 4 regressors with a parametric modulation across items
by the mean-centered proportion of choices of the specific item
during the entire probe phase; the same 4 regressors with a
parametric modulation by the WTP difference between the 2
presented items; one regressor for all “sanity-check” trials; one
regressor for all missed trials; and 2 regressors accounting for
response time differences (one regressor with a modulation
of the demeaned response time across trials for each value
category).

Since our behavioral effect was stronger for high-value
items (similar to previous cue-approach samples with snack
food items), we focused our analysis on the contrasts for high-
value chose Go, high-value chose Go modulated by choice and
high-value chose Go minus high-value chose NoGo. Similar to
analyses of the passive viewing task, we estimated a first-level
GLM for each run of each participant. We then averaged the
4 runs of each probe (after/follow-up) of each participant in a
second-level analysis. Finally, we ran a group level analysis as
described above, with one contrast for the mean group effect and
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one contrast for the demeaned probe effect across participants
(correlation with the behavioral effect across participants).

Some of the probe runs were excluded from the imaging
analysis (i.e., not included in the second-level analysis of the
specific participant) because one of the regressors was empty
or because the parametric modulator of Go item choices was
zeroed out, resulting in a rank-deficient design matrix. This hap-
pened, for example, when a participant chose high-value Go over
high-value NoGo items on all trials of a specific run. Participants
who did not have at least one full valid block (out of 2 probe
blocks, each probe including one presentation of each probe
pair) without any empty regressors or zeroed modulators for Go
items were excluded from the probe imaging analysis. In order to
minimize the number of excluded runs and participants, we did
not exclude runs or participants due to a zeroed modulator of
NoGo items choices but rather decided not to use the contrasts
including modulation by choice of trials where NoGo items were
chosen. Overall, one participant was excluded from the imaging
analysis of the probe from both the after and follow-up sessions
and 2 more were excluded each from one of the sessions, based
on regressors causing rank-deficient matrices (in addition to the
one participant that was excluded from the first session due to
excessive motion, as described above). Thus, a total of 33 (out
of 36) participants were included in the imaging analysis of the
probe after training (out of which for 28 participants no run
was excluded, for 4 participants 1 run was excluded and for 1
participant 2 runs and 1 block were excluded), and 25 (out of 27)
participants were included in the imaging analysis of the follow-
up probe (out of which for 21 participants no run was excluded
and for 4 participants 1 run was excluded).

Small Volume Correction Analysis
We hypothesized that value-, attention-, and memory-related
brain regions will be associated with the behavioral change fol-
lowing CAT: prefrontal cortex, dorsal parietal cortex, and medial-
temporal lobe, respectively. Thus, in addition to the whole-brain
analyses described above for the passive viewing and probe
tasks, we ran similar group level analyses once for each of these
prehypothesized regions (bilateral hippocampus, bilateral SPL
and vmPFC), with a mask containing the voxels that were part
of the region. All masks were based on the Harvard–Oxford
atlas (see Supplementary Fig. 2), anatomical regions for the
vmPFC mask were based on those used in previous CAT studies
(Schonberg et al. 2014; Bakkour et al. 2017). The masks are shared
with the data on OpenNeuro. It should be noted that the specific
description of the small volume correction (SVC) analysis was
unintentionally omitted from the preregistration. We further
tested whether results in the SVC analysis were significant
when performing Bonferroni correction for the 3 tested regions
(corrected α = 0.017).

Deviations from Preregistration

The analysis of the current work had been preceded by a prereg-
istration describing the main methodological statistical analy-
ses and hypothesized results of the work prior to the comple-
tion of data collection. While we aimed the preregistration to
be as detailed as possible, in some parts, our description was
lacking important details or was different from the eventually
performed course of action. Therefore, here we describe the
main differences between our preregistered analysis plan and
the analyses reported in the current paper.

First, our analysis plan included analyses of diffusion MRI
data, multivoxel pattern analysis, as well as generalized psy-
chophysiological interactions (gPPI). We also scanned a control
group that performed a control training task, to be used as com-
parison in the diffusion imaging analysis and initially planned to
also be used as baseline for fMRI comparisons. We decided these
analyses are beyond the scope of the current work and therefore
are not reported or discussed here. Second, our preregistered
analysis plan included a correct description of the first- and
second-level analyses and the regressors used in our GLM model.
However, it did not include a description of the planned fMRI
preprocessing pipeline nor a description of the contrasts used
across analyses levels. In our preregistered analysis plan, we
initially planned to use FSL’s permutations tool (Randomise) for
the fMRI group level analysis, and FSL’s FLAME1 as a backup
(Eklund et al. 2016). Eventually, considering that FEAT’s FLAME1
might be better for our design due to within-group variance (as
we specified in our preregistered analysis plan), we decided to
use FLAME1. Third, functional changes in the representation of
low-value items, as well as the direct comparison between the
change in high-value and low-value items, were not preregis-
tered. Nonetheless, they are reported in the results section and
presented in the Supplementary Materials for completeness.
Finally, our preregistration clearly indicated our prehypothe-
sized regions of interest. Although unintentionally not directly
mentioned, we preregistered these specific regions for the pur-
pose of using them in SVC analyses, as was done in previous
papers using the CAT paradigm (Schonberg et al. 2014; Bakkour
et al. 2017). These regions were not used in any other unreported
analysis. The intraparietal sulcus and perirhinal cortex, which
were also preregistered, were not used in the SVC analysis since
their anatomical definition was unclear using the Harvard–
Oxford anatomical atlas.

Results
Behavioral Probe Results

As in previous studies with CAT, our main behavioral mea-
sure for the cue-approach effect was the proportion of Go item
choices in the probe task.

After CAT
As expected from previous studies (Schonberg et al. 2014;
Bakkour et al. 2016, 2017; Salomon et al. 2018) and preregistered,
participants significantly preferred Go over NoGo items in high-
value probe choices (mean = 0.590, SE = 0.032, Z = 2.823, P = 0.002,
one-sided logistic regression) and marginally also in low-value
probe choices (mean = 0.561, SE = 0.038, Z = 1.639, P = 0.051; Fig. 2).
The proportion of Go items choices was significantly higher
for high-value compared with low-value items (indicating a
differential effect of CAT on preference for stimuli of the 2 value
categories; Z = 2.184, P = 0.015, one-sided logistic regression).

One-Month Follow-up
One month following training (mean = 30.26 days, SD = 9.93 days,
N = 27) participants significantly chose Go over NoGo items in
both high-value (mean = 0.563, SE = 0.035, Z = 1.854, P = 0.032) and
low-value (mean = 0.572, SE = 0.039, Z = 1.948, P = 0.026) probe
trials. There was no differential effect between high- and low-
value items in this session (Z = 0.622, P = 0.267).
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Figure 2. Behavioral results of Go choices during probe: mean proportion of
trials in which participants chose Go over NoGo items are presented for
high-value (dark gray) and low-value (light gray) probe pairs, for each session.
Means of the single participants are presented with dots over each bar. The

dashed line indicates chance level of 50%; error bars represent standard error
of the mean. Asterisks reflect statistical significance in a one-tailed logistic
regression analysis. Asterisks above each line represent proportions higher than

chance (log odds = 0; odds ratio = 1). Asterisks above pairs of bars represent
differential effect between the 2 value categories; +P < 0.1, ∗P < 0.05, ∗∗P < 0.005.

Behavioral Recognition Results

There was a prominent ceiling effect in participants’ perfor-
mance in the recognition task, in both sessions. This ceiling
effect did not allow us to reveal differences in memory for Go
compared with NoGo items. For a full description and statistics
see Supplementary analysis: behavioral recognition results.

Immediately After CAT
The mean hit rate across participants was 99.29% (SD = 2.08%),
mean correct rejection rate of 94.16% (SD = 5.22%) and mean
d′ = 3.921 (SD = 0.547). We did not find significant differ-
ences in hit rate or in RT between Go and NoGo items (see
Supplementary analyses: behavioral recognition results).
Results of the Go/NoGo recognition memory task showed
that participants significantly remembered the associations
between Go items and the cue (hit rate: mean = 79.69%,
SD = 28.14%; correct rejection rate: mean = 82.65%, SD = 21.05%;
d′: mean = 2.5, SD = 1.818; P < 0.001, 2-sided repeated measures
logistic regression). Accuracy in the Go/NoGo recognition task
(proportion of hits and correct rejections out of total items
that are included in Go/NoGo probe choices) was significantly
correlated with the proportion of Go items choices in probe for
high-value items (Pearson’s r = 0.371, P = 0.026, 2-sided linear
regression) but not for low-value items (Pearson’s r = 0.126,
P = 0.465).

One-Month Follow-up
It should be noted again that the recognition task in the
follow-up session was performed immediately after the passive
viewing and probe tasks. Therefore, results reflect within-
session memory, and not long-term memory effects from the
first session. The mean hit rate was 97.81% (SD = 2.37%), mean

correct rejection rate 94.26% (SD = 7.77%) and mean d′ was 3.79
(SD = 0.715). Again, we did not find significant differences in hit
rate or in RT between Go and NoGo items. Results of the Go/NoGo
recognition task showed that participants did not significantly
remember the association between items and cues better than
chance (hit rate: mean = 48.88%, SD = 31.57%; correct rejection
rate: mean = 71.77%, SD = 17.95%; d′: mean = 0.56, SD = 1.61;
p = 0.154, 2-sided logistic regression). We did not find significant
correlations between accuracy in the Go/NoGo recognition task
and the proportion of Go items choices in probe, neither for
high-value items (Pearson’s r = 0.219, P = 0.314, 2-sided linear
regression) nor for low-value items (Pearson’s r = 0.041, P = 0.853).

Behavioral Auction Results

We ensured that our item selection procedure retained equal
mean WTP between Go and NoGo items within each value
category (i.e., that on average, WTP values of Go and NoGo items
contrasted in probe were similar). The mean initial WTP of Go
items did not significantly differ from the mean initial WTP
for NoGo items, both for the high-value items (mean Go WTP:
5.758 ILS; mean NoGo WTP: 5.750 ILS; P = 0.960, 2-sided repeated
measures logistic regression) and for the low-value items (mean
Go WTP: 1.462 ILS; mean NoGo WTP: 1.478 ILS; P = 0.907, 2-sided
repeated measures logistic regression).

Similar to previous results regarding the change in WTP
following CAT (Schonberg et al. 2014), we observed a general
trend of regression to the mean—that is, while WTP for high-
value items significantly decreased (first session: P = 0.023;
follow-up session: P = 0.002), WTP for low-value items signifi-
cantly increased (P < 0.001 in both sessions). However, we did
not find significant differences between Go and NoGo items, in
both sessions (immediately after compared with before CAT and
1 month after compared with before CAT) and both value-level
(high-value and low-value items). For a full description and
statistics, as well as comparison between the second auction
of the first session and the auction performed in the follow-up
session, see Supplementary analyses: behavioral auction results.

Imaging Results

Behavioral results with snack food items from previous studies
(Schonberg et al. 2014; Bakkour et al. 2017; Salomon et al. 2018)
and from the current study demonstrated a differential pattern
of the change of preferences across value levels. Preference
modifications were more robust for high-value compared with
low-value items; therefore, we chose to focus on the functional
changes in the representation of high-value items. Functional
changes in the representation of low-value items, as well as
the direct comparison between the change in high-value and
low-value items, were not preregistered. Nonetheless, they are
reported here and presented in the Supplementary Materials.

We further tested 2 kinds of relations between the behav-
ioral effect and the neural response: “modulation across items”,
meaning that the change in activity was stronger for items that
were later more preferred during the subsequent probe phase
(within-participant first-level parametric modulation), and “cor-
relation across participants”, meaning that the change in activ-
ity was stronger for participants that later showed a stronger
behavioral probe effect, quantified as a higher ratio of choosing
Go over NoGo items (between-participants group-level correla-
tion). Finally, for a subset of 3 prehypothesized and preregistered
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Figure 3. fMRI results from the passive viewing task after compared with before CAT. (a) Enhanced BOLD activity in bilateral occipito-temporal regions, for high-value
Go compared with high-value NoGo items (whole-brain analysis). (b) Enhanced BOLD activity in the vmPFC in response to high-value Go items (small volume corrected
results; the mask used to correct for multiple comparisons is presented on a dark gray brain silhouette). For description of all activations see Supplementary Table 3.

regions (vmPFC, hippocampus and superior parietal lobule) we
performed a SVC analysis (see Materials and Methods).

All reported group level statistical maps were thresholded at
Z > 2.3 and cluster-based Gaussian random field corrected for
multiple comparisons at the whole-brain level with a (corrected)
cluster significance threshold of P = 0.05 (Worsley 2001). Since we
used 3 regions in our SVC analysis (vmPFC, hippocampus and
SPL), results obtained from this analysis were examined using a
Bonferroni corrected threshold of α = 0.017. Unthresholded and
thresholded images of all contrasts presented here are shared
on NeuroVault (Gorgolewski et al. 2015) (https://neurovault.org/
collections/TTZTGQNU/).

Passive Viewing Imaging Results

To investigate the functional changes in the response to indi-
vidual items following CAT, we scanned participants with fMRI
while they were passively viewing the items. Participants com-
pleted this task before, after, and 1 month following CAT (N = 36
before and immediately after and N = 27 after 1 month).

Our analysis focused on 3 main contrasts of interest: 1)
regions where response to the items was enhanced after com-
pared with before CAT; 2) regions where the correlation between
the BOLD response and subsequent choices across items was
changed after CAT (i.e., parametric modulation across items);
and 3) regions where the response modification was weak-
er/stronger for participants that were more affected by CAT (i.e.,
correlation across participants). Contrasts 1 and 3 were tested
both for Go compared with NoGo items, and for Go items sepa-
rately. Contrast 2 was only tested for Go items due to potential
ambiguity in interpretation of results for Go compared with
NoGo items. When a specific region was found to be significant
for Go items, but not for Go compared with NoGo items, we
further tested whether it was also significant for NoGo items.
We report all significant results for these contrasts of interest
and mention when there were no significant results.

Immediately After Versus Before CAT (Fig. 3; for Description of All
Activations See Supplementary Table 3)

BOLD activity while passively viewing high-value Go
compared with passively viewing high-value NoGo items was
increased after compared with before CAT in the left (cluster
size = 171 voxels, max Z value = 4.00, cluster corrected P = 0.014)
and right (cluster size = 192 voxels, max Z value = 3.82, cluster
corrected P = 0.028) occipital and temporal lobes (Fig. 3a), along
the ventral visual processing pathway (Goodale and Milner
1992). Results of the SVC analyses revealed enhanced BOLD
activity during passive viewing of high-value Go items after
compared with before CAT in the vmPFC (Fig. 3b; cluster size = 98

voxels, max Z value = 3.44, cluster corrected P = 0.004). Activity
in the vmPFC was not enhanced for NoGo items. There were no
significant results for the parametric modulation across items
nor for the correlation across participants immediately after
compared with before CAT.

Bold activity while passively viewing low-value Go compared
with passively viewing low-value NoGo items was stronger
immediately after compared with before CAT in the temporo-
occipital part of the left middle temporal gyrus (cluster size = 175
voxels, max Z value = 3.67, cluster corrected P = 0.021), left
superior lateral occipital cortex (cluster size = 194 voxels, max
Z value = 3.43, cluster corrected P = 0.011), left postcentral gyrus
(cluster size = 153 voxels, max Z value = 3.67, cluster corrected
P = 0.047), left posterior supramarginal/angular gyrus (cluster
size = 237 voxels, max Z value = 4.02, cluster corrected P = 0.003),
middle PFC (cluster size = 304 voxels, max Z value = 3.75, cluster
corrected P < 0.001), and cerebellum (cluster size = 236 voxels,
max Z value = 4.01, cluster corrected P = 0.003) (see Supple-
mentary Fig. 3 and Supplementary Table 4). The significant
cluster for the low-value items in the temporo-occipital visual
cortex was smaller, as well as more anterior and lateral,
compared with the significant cluster for the high-value items.
SVC analysis in the vmPFC for low-value items immediately
after compared with before CAT did not reveal any significant
results.

A direct comparison between the changes for high-value Go
compared with low-value Go items, as well as a comparison
between the differences of high-value Go minus high-value
NoGo items and the differences of low-value Go minus low-
value NoGo items, revealed no significant clusters.

One-Month Follow-up Versus Before (Fig. 4; for Description of All
Activations See Supplementary Table 5)

There were no significant whole-brain results for enhanced
activity in the 1-month follow-up compared with before CAT for
Go items nor for Go compared with NoGo items. BOLD activity in
the left orbitofrontal cortex (OFC) in response to high-value Go
items was positively modulated by the choice effect across items
in the follow-up compared with before CAT (whole-brain anal-
ysis; Fig. 4a; cluster size = 147 voxels, max Z value = 3.59, cluster
corrected P = 0.020). This modulation was not found for NoGo
items. SVC analyses revealed that BOLD activity in response to
high-value Go minus high-value NoGo items in the right SPL was
negatively correlated with the choice effect across participants
in the follow-up compared with before training (Fig. 4b; cluster
size = 87 voxels, max Z value = 3.92, cluster corrected P = 0.009).

When observing the same contrasts for low-value items, we
did not find significant changes in BOLD activity during passive
viewing 1 month following compared with before CAT. A direct
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Figure 4. fMRI results from the passive viewing task in the 1-month follow-
up compared with before CAT. (a) BOLD activity in response to high-value Go

items in the left OFC was positively modulated by the choice effect across items
(whole-brain analysis). (b) BOLD activity in response to high-value Go minus
high-value NoGo items in the right SPL was negatively correlated with the choice
effect across participants (small volume corrected). The masks used to correct

for multiple comparisons in the SVC analyses are presented on a dark gray brain
silhouette. For description of all activations, see Supplementary Table 5.

comparison between changes for high-value Go compared with
low-value Go items also did not reveal significant differences.

Our SVC analysis revealed several activations in prehypoth-
esized regions that were not significant when applying the
more stringent Bonferroni-corrected threshold of P < 0.017.
These results are presented in Supplementary Fig. 5 and
Supplementary Table 7. A region in the vmPFC showed a
trend of enhanced BOLD activity 1 month after compared with
before CAT (Supplementary Fig. 5a; cluster size = 58 voxels,
max Z value = 3.21, cluster corrected P = 0.023; not significant
following Bonferroni correction), similarly to the short-term
change. However, vmPFC activity was also enhanced for NoGo
items (see Supplementary Fig. 4a and Supplementary Table 6;
cluster size = 140 voxels, max Z value = 3.74, cluster corrected
P < 0.001). SVC analyses further revealed that BOLD activity
in response to high-value Go items in the right anterior
hippocampus trended to be positively modulated by the choice
effect across items in the follow-up compared with before
training (Supplementary Fig. 5b; cluster size = 36 voxels, max Z
value = 3.79, cluster corrected P = 0.045; not significant following
Bonferroni correction). When testing the modulation across
items in the hippocampus in response to NoGo items, we
found a significant cluster in the left anterior hippocampus
(see Supplementary Fig. 4b and Supplementary Table 6; cluster
size = 62 voxels, max Z value = 3.67, cluster corrected P = 0.011).

Probe Imaging Results

To investigate the functional response during choices, we
scanned participants with fMRI while they completed the
probe (binary choices) phase, as was done in previous studies
(Schonberg et al. 2014; Bakkour et al. 2017). Participants
completed the probe task immediately after CAT (N = 33). In
the current study, we also scanned for the first time the probe
session in the 1-month follow-up (N = 25).

Our analysis focused on 3 main contrasts of interest: 1)
regions where response was enhanced during choices of Go
compared with choices of NoGo items; 2) regions where the
response was weaker/stronger for Go items that were chosen
more (i.e., modulation across items). As was describes in the
methods section, we were not able to test this contrast for Go

Figure 5. fMRI results from the probe task, immediately after and 30 days
following CAT (whole-brain analysis). (a) Enhanced BOLD activity during choices
of high-value Go compared with choices of high-value NoGo items after CAT
in bilateral visual regions and bilateral central opercular cortex and Heschl’s

gyrus. (b) BOLD response after CAT was negatively correlated with the choice
effect across participants and (c) negatively modulated by the choice effect
across items, during choices of high-value Go over high-value NoGo items in the
striatum as well as other regions. (d) Bold activity during choices of high-value

Go items in the 1-month follow-up was positively modulated by the choice effect
across items in the precuneus, bilateral superior occipital cortex, and bilateral
middle and superior temporal gyrus and (e) positively correlated with the choice
effect across participants in the precuneus/posterior cingulate cortex (PCC) and

right post-central gyrus. For description of all activations see Supplementary
Table 8 and Supplementary Table 10.

minus NoGo or for NoGo items without excluding more partici-
pants, and thus only focused on this modulation for choices of
Go items; 3) regions where the response was weaker/stronger
for participants that were more affected by CAT (i.e., correlation
across participants). This contrast was tested both for choices of
Go compared with choices of NoGo items, and for choices of Go
items separately. We report all significant results for these con-
trasts of interest and mention when there were no significant
results.

Immediate Probe (Fig. 5a–c, for Description of All Activations See
Supplementary Table 8)

BOLD activity was stronger during choices of high-value
Go over high-value NoGo items compared with choices of
high-value NoGo over high-value Go items in bilateral visual
regions (right: cluster size = 131 voxels, max Z value = 3.86,
P = 0.048; left: cluster size = 188 voxels, max Z value = 4.04,
cluster corrected P < 0.001) and bilateral central opercular
cortex and Heschl’s gyrus (right: cluster size = 152 voxels, max
Z value = 3.91,Pp = 0.020; left: cluster size = 136 voxels, max Z
value = 3.74, cluster corrected P = 0.039) (Fig. 5a). In addition,
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BOLD activity in the striatum while choosing high-value Go
compared with choosing high-value NoGo items after CAT was
negatively correlated with the choice effect across participants
(the ratio of choosing high-value Go items during probe; cluster
size = 148 voxels, max Z value = 4.00, cluster corrected P = 0.024;
Fig. 5b) and negatively modulated by the choice affect across
items (cluster size = 245 voxels, max Z value = 3.88, cluster
corrected P < 0.001; Fig. 5c).

There were no regions with significant stronger BOLD activity
during choices of low-value Go items compared with choices
of low-value NoGo items after CAT. In the superior division of
the left lateral occipital cortex, the difference between activity
during choices of low-value Go items and activity during choices
of low-value NoGo items was negatively correlated with the
choice effect across participants (cluster size = 155 voxels, max
Z value = 3.43, cluster corrected P = 0.009; see Supplementary
Fig. 6a). In addition, BOLD activity in the left (cluster size = 260
voxels, max Z value = 3.82, cluster corrected P < 0.001) and right
(cluster size = 352 voxels, max Z value = 4.24, cluster corrected
P < 0.001) Heschl’s gyrus/central opercular cortex and in the left
precuneous (cluster size = 158 voxels, max Z value = 3.62, cluster
corrected P = 0.016) was stronger immediately after CAT during
choices of high-value Go items compared with choices of low-
value Go items (see Supplementary Fig. 6b and Supplementary
Table 9).

Our SVC analysis revealed several activations in prehypoth-
esized regions that were not significant when applying the
more stringent Bonferroni-corrected threshold of P < 0.017.
These results are presented in Supplementary Fig. 5. BOLD
activity in the right SPL while choosing high-value Go items
after CAT demonstrated a trend of negative correlation with
the choice effect across participants (Supplementary Fig. 5c;
cluster size = 53 voxels, max Z value = 3.44, cluster corrected
P = 0.035, not significant following Bonferroni correction) and
a trend of negative modulation by the choice effect across
items (Supplementary Fig. 5d; cluster size = 47 voxels, max Z
value = 3.80, cluster corrected P = 0.048, not significant following
Bonferroni correction).

One-Month follow-up Probe (Fig. 5d,e, for Description of All
Activations See Supplementary Table 10)
In the follow-up probe, we did not find regions where BOLD
activity during choices of high-value Go items was stronger
than during choices of NoGo items. BOLD activity in the pre-
cuneus (cluster size = 151 voxels, max Z value = 3.67, cluster cor-
rected P = 0.005), bilateral superior occipital cortex (right: cluster
size = 208 voxels, max Z value = 3.87, cluster corrected P < 0.001;
left: cluster size = 201 voxels, max Z value = 4.18, cluster cor-
rected P < 0.001) and bilateral middle and superior temporal
gyrus (right: cluster size = 175 voxels, max Z value = 3.89, clus-
ter corrected P = 0.002; left: cluster size = 342 voxels, max Z
value = 4.3, cluster corrected P < 0.001) while choosing high-
value Go items in the follow-up probe was positively modu-
lated by the choice effect across items (Fig. 5d). BOLD activity in
the precuneus/posterior cingulate cortex (PCC; cluster size = 474
voxels, max Z value = 3.80, cluster corrected P < 0.001) and right
post-central gyrus (cluster size = 181 voxels, max Z value = 4.40,
cluster corrected P = 0.004) while choosing high-value Go items
in the follow-up probe was positively correlated with the choice
effect across participants (Fig. 5e). There were no significant
results for these contrasts for low-value items. However, BOLD
activity in the left (cluster size = 265 voxels, max Z value = 3.98,
cluster corrected P < 0.001) and right (cluster size = 588 voxels,

max Z value = 4.25, cluster corrected P < 0.001) occipital poles
was stronger 1 month after CAT during choices of high-value
Go items compared with choices of low-value Go items (see
Supplementary Fig. 6c and Supplementary Table 9).

Discussion
In the current work, we set out to examine the neural
mechanisms underlying nonreinforced behavioral change
following CAT, in the short and in the long term. We introduced
a novel passive viewing task to study the functional plasticity
of response to single items before, after and 1 month following
CAT. We predicted and preregistered that the underlying neural
mechanisms will involve specific memory, attention, and value-
related brain regions.

Behaviorally, our main hypothesis was that we will replicate
the CAT effect, that is, participants will significantly choose
high-value cued (high-value Go) over high-value noncued (high-
value NoGo) items, both immediately and 1 month following
CAT. In addition, we hypothesized better memory for Go com-
pared with NoGo items, a correlation between this memory dif-
ference and the CAT effect and potentially a weaker regression
to the mean of the WTP for Go compared with NoGo items.

The behavioral results obtained in the current study (see
Fig. 2) replicated previous results and in accordance with our
preregistered predictions demonstrated enhanced preferences
toward high-value Go compared with high-value NoGo items
following CAT (Schonberg et al. 2014; Bakkour et al. 2016, 2017,
2018; Veling et al. 2017; Zoltak et al. 2017; Salomon et al. 2018).

The fMRI results of this study suggest the involvement of
several neural components in preference modification induced
by CAT.

Perceptual Enhancement in the Short Term

Examining the neural response for high-value Go compared
with high-value NoGo items following CAT revealed enhanced
processing in ventral visual regions (Fig. 3a). We refer to
these changes as “bottom-up” processes to emphasize that
they occurred in perceptual regions, contrary to the common
view, which localizes value-based decision-making in high-
level prefrontal regions. We also found an indication for
enhancement of visual processing in response to low-value Go
items following CAT (Supplementary Fig. 3). This enhancement
was in a smaller region, which might be related to the weaker
behavioral effect for low-value items. There were no significant
results in a direct comparison between the change of response to
high-value Go versus low-value Go items. However, it should be
noted that our study was not well powered for this comparison,
since we focused our analyses on the high-value items, for
which there was a stronger behavioral change, both in this
study and previous ones with snack food items (Schonberg et al.
2014; Salomon et al. 2018). Eye gaze recorded during the passive
viewing task from a subset of participants did not reveal longer
gaze duration on paired items (see Supplementary exploratory
analysis: eye tracking) immediately after training and thus is
probably not the reason for the enhanced fMRI signal for high-
value Go over NoGo.

We show here for the first time that activity in high-level
visual processing occipito-temporal cortex was involved
when preferences were modified using CAT, without external
reinforcements. Activity in low- and high-level visual regions
was previously shown to be related to past rewards (Serences
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2008) and to value of visual attributes later integrated to overall
stimulus value in the vmPFC (Lim et al. 2013), but not to
preferences modification in the absence of external reinforce-
ments as in the current study. We suggest that the functional
changes in visual regions reflect modifications in the perceptual
representation of the paired items (Ishai et al. 2000; Grill-Spector
2003). In the short-term, the enhanced bottom-up processing
and representation change of individual Go items putatively
lead to enhanced value-related processing and enhanced
preferences toward these items during choices.

Decreased Top-Down Attention

Participants with overall greater long-term behavioral change
demonstrated reduced change of response to high-value Go
items in the follow-up compared with before CAT in the right
SPL (i.e., activity was negatively correlated with the choice effect
across participants in the long term; see Fig. 4b). This finding
suggests reduced involvement of top-down parietal mech-
anisms during passive viewing of Go compared with NoGo
items (Culham and Kanwisher 2001). This finding is in the
opposite direction of our preregistered prediction of enhanced
involvement of attention-related mechanisms. Decreased top-
down attentional mechanisms may underlie the impulsive-like
nature of the preference bias toward Go items (Veling et al. 2017).

Putative Long-Term Maintenance via Memory
Processes, Based on Marginal Results

We preregistered our hypothesis that hippocampal memory pro-
cesses will be involved in CAT. SVC analysis of the passive view-
ing task 1 month after compared with before CAT showed a trend
of enhanced hippocampal activity modulated by the proportion
of trials. Go items were chosen in the subsequent probe task.
This trend however did not exceed statistical significance after
Bonferroni correction for number of regions (see Supplementary
Fig. 5b). The same contrast was significant for high-value NoGo
items (see Supplementary Fig. 4b). These findings suggest that
items, mainly NoGo items, that are more recognized or more
vividly attended to during passive viewing are later chosen more
often.

These results lead to 2 possible interpretations: in one, the
hippocampal modulated activity suggests that CAT, putatively
through immediate perceptual processing enhancement,
affected the encoding and accessibility of items and their
related associations in memory after 30 days, which in turn
affected choices. Alternatively, it is possible that the relation
between long-term memory enhancement and choices is the
result of a mere-choice effect (Ariely and Norton 2008; Sharot
et al. 2010, 2012), as the binary probe task was performed
in the first session immediately after CAT. The short-term
effect can only be attributed to CAT, while the long-term effect
may involve a choice effect. Importantly, even if the long-
term effect is partially the result of a choice effect (which
the current study cannot test), it still holds great promise as
a behavioral intervention for long-lasting behavioral change.
Since the parametric modulation in the hippocampus for
high-value Go items was not significant with the Bonferroni-
corrected threshold, while the modulation for high-value NoGo
items was, the interaction between memory processes and the
behavioral effect may be stronger for NoGo items than for Go
items, putatively due to other processes being involved in the
enhanced preferences toward high-value Go items.

Although participants completed a behavioral recognition
task at the end of the experiment, this experiment was not
designed to test behavioral memory modifications. Therefore,
the recognition task was performed immediately after the rest
of the tasks. This design resulted in a ceiling effect of over 99%
hit rate across participants, masking any memory differences
between Go and NoGo items. Differences in RT were also not
optimal for testing, as the task was self-paced. Moreover, in the
follow-up session, the recognition task was again performed
following the probe task; therefore, long-term memory for the
items (old/new) was not actually tested.

The Go/NoGo recognition task tested participants’ memory
for the cue-item associations. Unlike the old/new recognition
task, this task did measure long-term memory, since training
was only performed in the first session. However, the Go/NoGo
recognition task only tested memory of the cue-item associ-
ations, while the old/new recognition task measured general
recognition memory of the items. Results of this task showed
that participants significantly remembered the association of
Go items with the cue immediately after CAT, but not in the
1-month follow-up. The correlation between recognizing Go
items and choosing Go over NoGo items was only significant
for high-value items in the first session. These findings raise
the possibility that the stronger response to Go items in high-
level perceptual regions was related to participants recognizing
the high-value Go items only immediately, but not 1 month
after CAT. However, since the recognition task was performed
after choices, recognition memory could have been affected by
previous choices.

Overall, our behavioral recognition data do not allow us
to behaviorally test for memory involvement in the short- or
long-term effect of CAT. Future behavioral studies, designed
specifically to test for memory modifications, are needed to
explore the involvement of memory processes in the behavioral
change following CAT, both in the short and long term, as
well as to test the involvement of a choice effect in the
long term. This can be done for example by omitting the
immediate probe task and testing choices only in the follow-up
session.

Enhanced Value Response

Value change is reflected in enhanced neural response of
the vmPFC to high-value Go items, immediately after CAT
(see Fig. 3b) and marginally in the 1-month follow-up (see
Supplementary Fig. 5a; note that this result was not significant
when using a Bonferroni-corrected threshold). In the 1-month
follow-up, value change was further reflected in the OFC, where
activity was stronger while passively viewing high-value Go
items that were later chosen more during the subsequent probe
phase (see Fig. 4a). These findings may indicate, as predicted
and preregistered, a long-lasting value change signature of
individual items not during choices (Lebreton et al. 2009;
Levy et al. 2011). Overall, these results reveal for the first time an
item-level value change during passive viewing (Serences 2008;
Levy et al. 2011), in line with previous findings of enhanced
activity in the vmPFC during binary choices of more preferred
high-value Go items (Schonberg et al. 2014). It should be noted
that we also found enhancement of vmPFC activity in the
follow-up compared with before CAT during passive viewing
of high-value NoGo items. This nonselective enhancement may
be the result of a mere exposure effect (Zajonc 1968), where the
value of items is enhanced following repeated exposure to them
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(although it was found for NoGo items only in the follow-up and
not immediately after CAT).

We suggest that the joint effect of the 3 above-described
components provides a shift toward enhanced bottom-up over
top-down processes, resulting in non reinforced behavioral
change that can be maintained for a long period of time.
Based on the findings of the current study, we propose
that the low-level association of visual, auditory, and motor
systems during training modifies valuation of items via a
network including enhanced bottom-up perceptual processes
in the immediate short term, which is translated to long-term
maintenance by decrease of top-down attentional control and
putatively memory enhancement. This leads to long-lasting
behavioral change. In Supplementary Fig. 7 we provide a putative
outline of the suggested dynamics of this preference change
process. Although the proposed model dynamics are based
on reverse inference from the current work data, its principal
components (i.e., top-down attention-, memory-, and value-
related mechanisms) were predicted and preregistered prior
to analyses. The methods and results of our current study
do not lend themselves to directly testing this suggested
mechanism using current available methods. Future studies
should test the validity and reproducibility of these results using
independent data.

Functional Activity During Binary Choices also Reflect
Enhanced Bottom-Up and Decreased Top-Down
Mechanisms of Preferences Modification

Functional MRI responses during binary choices also resonate
the proposed dynamics for the nonreinforced behavioral change
(Supplementary Fig. 7), demonstrating enhanced perceptual pro-
cessing in the short-term and marginal evidence of involvement
of memory processes as well as decreased top-down attention
mechanisms in the long-term.

When participants chose high-value Go over high-value
NoGo items, activity in perceptual regions—both visual and
auditory—was enhanced (see Fig. 5a). These findings suggest
that, in the short-term, retrieval of the low-level visual and
auditory associations constructed during training were associ-
ated with choices of Go items. Thus, functional response during
choices further supports the involvement of enhanced bottom-
up processing in the immediate nonreinforced modification of
preferences.

In the follow-up session, choices of high-value Go over NoGo
items were associated with enhanced BOLD activity in the
precuneus and PCC (see Fig. 5d,e), which have been related to
episodic memory retrieval and are also considered to be part of
the default mode network (Shallice et al. 1994; Fransson and
Marrelec 2008; Sestieri et al. 2011). This provides additional
support for the putative role of memory processes in the long-
term retention of the behavioral change.

Although not significant after the Bonferroni-corrected
threshold, uncorrected results from the probe SVC analysis
provide limited support for the involvement of reduced top-
down attentional mechanisms revealed from the passive
viewing task. During choices of high-value Go items, activity
in the SPL showed a trend of negative modulation by the choice
effect across items as well as negatively correlated with the
choice effect across participants (though in a more posterior
and inferior region, see Supplementary Fig. 5c,d).

We were not able to replicate previous results showing
enhanced activity in the vmPFC during choices of Go items

that were chosen more overall (Schonberg et al. 2014; Bakkour
et al. 2017). These previous results were found for high-value Go
items when the group’s behavioral effect of choosing high-value
Go items was significant but weak relative to other samples
(study 3 in Schonberg et al. 2014). Similar results were found
for choices of low-value Go compared with choices of low-value
NoGo items, and not for choices of high-value Go items, when
the behavioral effect was strong for high-value items and weak
for low-value items (Bakkour et al. 2017). Therefore, a possible
account for the lack of replication of these findings in the current
study is that this contrast of modulation across items depends
on the variance of the choice effect across items, which seems to
be smaller in the current study compared with previous samples
that found this effect.

Overall, neural activity during binary choices support our
suggested proposal of nonreinforced behavioral change (Supple-
mentary Fig. 7), demonstrating similar patterns to these shown
in the passive viewing task: enhanced perceptual processing
in the short-term and putatively long-term manifestation of
the behavioral change through reduced top-down involvement
(here both in the short and long term) and memory-related
mechanisms.

Additional Behavioral Findings

As in Salomon et al. (2018), we found a significant correlation
between choices across sessions: items that were chosen in
the first session were more likely to be chosen again in the
follow-up session. These results offer 2 possible interpretations:
first, that CAT enhanced preferences of specific items, and
these effects last for months, or second, that CAT affected
immediate choices and follow-up choices were consistent
with immediate choices via a “mere choice” effect (Ariely
and Norton 2008; Sharot et al. 2010, 2012) or an effect on
memory processes. The design of the current study does not
enable us to differentiate between these 2 possibilities. Future
studies could better resolve these 2 alternative hypotheses
by testing the long-term maintenance of the CAT effect
without performing a probe choice immediately after training.
Importantly, as the immediate effect is the direct result of CAT,
both possibilities are interesting and reflect the great potential
of CAT as a behavioral intervention for long-lasting behavioral
change.

Similar to previous experiments (Schonberg et al. 2014), par-
ticipants completed a BDM auction task at the beginning of the
experiment as well as at the end of each session. Previous CAT
experiments identified regression to the mean for both Go and
NoGo items (Schonberg et al. 2014). One previous experiment
found regression to the mean to be weaker for Go compared with
NoGo items, but a different experiment in the same study did not
replicate this effect (Schonberg et al. 2014). In the current study,
we found regression to the mean with no differences between
Go and NoGo items (i.e., no effect of CAT on WTP). Although
the second auction was performed after participants knew they
will get one item at the end of the experiment based on a single
random choice from the probe task, we suggest that the auction
still validly measured WTP for 2 reasons: 1) at the time of the
second auction participants did not know which item they will
receive based on the probe task (which could potentially be a
low-valued one); 2) participants were strongly influenced by the
long food-abstinence manipulation, including 4 h of fasting prior
to the experiment and the additional time of completing the
experiment.
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The results of the WTP comparison between auctions sug-
gest 2 main hypotheses: first, that CAT affects choices, not
via a change in WTP but rather via other mechanisms that
are involved in forced choices but not monetary valuation. Or
second, that a single WTP test following CAT was not sensitive
enough to elicit a behavioral effect, while a forced binary choice
paradigm between similarly valued stimuli could have detected
value modification effects more reliably.

Exploratory analysis testing RTs in the probe task (see Sup-
plementary exploratory analyses: probe choice response times)
revealed that choices of Go items were significantly faster than
choices of NoGo items in both sessions. A previous study also
found that healthy participants make probe Go choices faster
than probe NoGo choices (Aridan et al. 2019). This finding may
indicate either that the value of Go items was enhanced and thus
choices of these now more valued items are faster (Krajbich et al.
2010; Milosavljevic et al. 2010) or that Go item choices are more
impulsive and are therefore faster (Veling et al. 2017).

Limitations and Additional Considerations

Our sample size was based on a power analysis performed
with data of a previous finding of enhanced vmPFC activity
during choices of high-value Go versus high-value NoGo
items modulated by the number of times each item was
chosen (Schonberg et al. 2014). Therefore, although our study
focused on the novel passive viewing task, the power analysis
was an estimation based on the probe analysis rather than
the novel passive viewing analysis. Current power analysis
methods are based on previous results or a known effect
size in a specific region (e.g., http://www.fmripower.org/
and http://neuropowertools.org/neuropower/neuropowerstart/).
Furthermore, these methods do not account for the effect
of whole-brain (or small-volume) cluster correction analysis.
Therefore, it should be noted that, similar to many other fMRI
studies, we cannot indicate with certainty whether we are
sufficiently powered to detect the different effects that were
tested. Nonetheless, we reported results for all performed
analyses and highlighted the significant results while not
claiming null effects.

In our imaging analysis we tested several contrasts of
interest. Generally, we tested 1) in which regions the response
to the items was changed following CAT, 2) in which regions
the change in response was modulated by subsequent choices
across items, and 3) in which regions the change in response
was correlated with the behavioral effect across participants.
The first contrast examined overall change in response to all
Go items. Results found in this contrast for Go versus NoGo
items (e.g., the enhancement in visual regions) are considered
stronger than results found only for Go items or both for Go
and NoGo items (e.g., the enhanced response in vmPFC). The
second contrast of interest was directly related to behavior and
directly tested the regions where the change in response was
related to choices of specific items within participants. The
third contrast of interest tested for regions which were related
to behavioral differences across participants, as CAT is a group-
level effect with some participants showing stronger effect
than others.

While a region showing both an overall change for Go
and not for NoGo items after CAT and a correlation with
the behavioral effect would have been considered most
related to the CAT effect, our findings immediately after CAT
were found in contrasts testing for main effects across all

high-value paired items, whereas results from the 1-month
follow-up were obtained mainly in parametric modulation
of choices across items (within participants). This might be
explained by the nature of CAT as a group effect. Not all
participants significantly choose Go over NoGo items following
training and there is considerable variance across participants.
In addition, training is performed at the individual item level,
and thus preferences might be affected only for some but not all
paired items.

The CAT effect in the 1-month follow-up was relatively weak
in the current study, although the behavioral effect was found
to last for months in previous studies (Schonberg et al. 2014;
Salomon et al. 2018). Since the long-term behavioral effect was
weaker than the effect in the short term, the variance across
items was larger and putatively enabled us to find differences
in the response to different items in the follow-up session. The
weaker long-term effect may have been the result of the new
passive viewing task. In this task, which was completed before,
after and 1 month after training, items were presented on the
screen without cues or motor responses, possibly resulting in
partial extinction of the cue-item pairing established during
training.

Our results suggest that, in the short term, perceptual pro-
cessing is enhanced beyond all paired items, while in the long
term, the effect persists only for some of the items; thus the
overall behavioral effect is weaker and the neural changes are
more prominent for the items that elicited weaker response in
top-down attention-related regions.

Conclusions
Research of value-based decision-making and behavioral
change interventions focused on top-down mechanisms such
as self-control or external reinforcements as the main means
to change preferences (Rangel et al. 2008; Wood and Neal 2016).
The CAT paradigm has been shown to change preferences using
the mere association of images of items with a cued speeded
button response without external reinforcements. The paradigm
is highly replicable with dozens of studies demonstrating the
ability to change behavior for months with various stimuli and
cues (Schonberg et al. 2014; Bakkour et al. 2016, 2017, 2018;
Veling et al. 2017; Zoltak et al. 2017; Salomon et al. 2018).
Current interventions that rely on reinforcement and self-
control fail to change behavior for the long term. Our findings
emphasize the importance and great potential of targeting
bottom-up rather than top-down mechanisms to induce long-
lasting behavioral change. Our uncorrected results hint at an
involvement of memory processes in value-based decision-
making and its relevance to the durability of the behavioral
change, which should be directly tested in future studies. We
present a suggested model for the dynamics underlying this
change. Our current findings can lead to new theories relating
perceptual processing, attention, and putatively memory to
preferences and decision-making. They hold promise for new
long-term behavioral change interventions targeting this novel
pathway for value change based on bottom-up mechanisms,
which can lead to long lasting change and thus improve the
quality of life for people around the world.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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